Abarzua, N., Pomareda, R., & Vega, O. (2018). Feet in orthogonalBuekenhoutMetz unitals. Advances in Geometry, to appear.
Abstract: Given an orthogonalBuekenhout�Metz unital Uα,β, embedded in PG(2, q2), and a point P ∉ Uα,β, we study the set τP(Uα,β) of feet of P in Uα,β. We characterize geometrically each of these sets as either q + 1 collinear points or as q + 1 points partitioned into two arcs. Other results about the geometry of these sets are also given.

Antico, F. C., Wiener, M. J., ArayaLetelier, G., & Retamal, R. G. (2017). Ecobricks: a sustainable substitute for construction materials. Rev. Constr., 16(3), 518–526.
Abstract: Ecobricks, polyethylene terephthalate (PET) bottles filled with mixed inorganic waste, have become a low cost construction material and a valid recycling method to reduce waste disposal in regions where industrial recycling is not yet available. Because Ecobricks are filled with mixed recovered materials, potential recycling of its constituents is difficult at the end of its life. This study proposes considering Ecobricks filled with a single inorganic waste material to work as a time capsule, with potential for recovering the filling material when other ways of waste valorization are available within those communities that currently have no better recycling options. This paper develops an experimental characterization of density, filler content (by volume), thermal shrinkage, elastic modulus and deformation recovery capacity using four different filler materials: 1) PET; 2) paper & cardboard; 3) tetrapack; and 4) metal. Overall, Ecobrick's density, thermal shrinkage and elastic modulus are dependent on the filler content. Density and elastic modulus of the proposed Ecobricks are similar to values of mediumhigh density expanded polystyrene (EPS) used in nonstructural construction, reason why we suggest that these Ecobricks might be a sustainable alternative to EPS or other nonstructural construction materials.

ArayaLetelier, G., Antico, F. C., Carrasco, M., Rojas, P., & GarciaHerrera, C. M. (2017). Effectiveness of new natural fibers on damagemechanical performance of mortar. Constr. Build. Mater., 152, 672–682.
Abstract: Addition of fibers to cementbased materials improve tensile and flexural strength, fracture toughness, abrasion resistance, delay cracking, and reduce crack widths. Natural fibers have recently become more popular in the construction materials community. This investigation addresses the characterization of a new animal fiber (pig hair), a massive foodindustry waste worldwide, and its use in mortars. Morphological, physical and mechanical properties of pig hair are determined in order to be used as reinforcement in mortars. A sensitivity analysis on the volumes of fiber in mortars is developed. The results from this investigation showed that reinforced mortars significantly improve impact strength, abrasion resistance, plastic shrinkage cracking, age at cracking, and crack widths as fiber volume increases. Other properties such as compressive and flexural strength, density, porosity and modulus of elasticity of reinforced mortars are not significantly affected by the addition of pig hair. (C) 2017 Elsevier Ltd. All rights reserved.

Asenjo, F. A., & Comisso, L. (2017). Magnetic connections in curved spacetime. Phys. Rev. D, 96(12), 7 pp.
Abstract: The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between plasma elements is generalized to relativistic plasmas in curved spacetime. The connections between plasma elements, which are established by a covariant connection equation, display a particularly complex structure in curved spacetime. Nevertheless, it is shown that these connections can be interpreted in terms of magnetic field lines alone by adopting a 3 + 1 foliation of spacetime.

Asenjo, F. A., & Hojman, S. A. (2017). Birefringent light propagation on anisotropic cosmological backgrounds. Phys. Rev. D, 96(4), 12 pp.
Abstract: Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuumdominated anisotropic Universe, which reproduces a FriedmannRobertsonWalker Universe (for late times)while, for earlier times, it matches a Kasner Universeis studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its nonnull geodesic behavior. New results presented here may help to tackle some issues related to the “horizon” problem.

Asenjo, F. A., & Hojman, S. A. (2017). Do electromagnetic waves always propagate along null geodesics? Class. Quantum Gravity, 34(20), 12 pp.
Abstract: We find exact solutions to Maxwell equations written in terms of fourvector potentials in nonrotating, as well as in Gdel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled secondorder differential equations for combinations of the components of the fourvector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in nonrotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gdel and Kerr spacetimes do not exhibit that behavior.

Asenjo, F. A., & Hojman, S. A. (2017). New nonlinear modified massless KleinGordon equation. Eur. Phys. J. C, 77(11), 5 pp.
Abstract: The massless KleinGordon equation on arbitrary curved backgrounds allows for solutions which develop “tails” inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless KleinGordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits currentcurrent interaction. Its nonlinearity is due to a selfcoupling term which is related to the quantum mechanical Bohm potential.

Asenjo, F. A., Erices, C., Gomberoff, A., Hojman, S. A., & Montecinos, A. (2017). Differential geometry approach to asymmetric transmission of light. Opt. Express, 25(22), 26405–26416.
Abstract: In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as “transformation optics.” This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material or more precisely, its constitutive tensorwill not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the “Wtensor.” In the geometric optics approximation we show how the properties of the Wtensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization). (C) 2017 Optical Society of America

Barrera, J., Moreno, E., & Varas K., S. (2018). A decomposition algorithm for computing income taxes with passthrough entities and its application to the Chilean case. Ann. Oper. Res., to appear.
Abstract: Income tax systems with “passthrough” entities transfer a firm's incomes to the sharehold ers, which are taxed individually. In 2014, a Chilean tax reform introduced this type of entity and changed to an accrual basis that distributes incomes (but not losses) to shareholders. A crucial step for the Chilean taxation authority is to compute the final income of each individual, given the complex network of corporations and companies, usually including cycles between them. In this paper, we show the mathematical conceptualization and the solution to the problem, proving that there is only one way to distribute incomes to taxpayers. Using the theory of absorbing Markov chains, we define a mathematical model for computing the taxable incomes of each taxpayer, and we propose a decomposition algorithm for this problem. This allows us to compute the solution accurately and with the efficient use of computational resources. Finally, we present some characteristics of the Chilean taxpayers' network and computational results of the algorithm using this network.

Barros, M., Galea, M., Leiva, V., & SantosNeto, M. (2018). Generalized Tobit models: diagnostics and application in econometrics. J. Appl. Stat., 45(1), 145–167.
Abstract: The standard Tobit model is constructed under the assumption of a normal distribution and has been widely applied in econometrics. Atypical/extreme data have a harmful effect on the maximum likelihood estimates of the standard Tobit model parameters. Then, we need to count with diagnostic tools to evaluate the effect of extreme data. If they are detected, we must have available a Tobit model that is robust to this type of data. The family of elliptically contoured distributions has the Laplace, logistic, normal and Studentt cases as some of its members. This family has been largely used for providing generalizations of models based on the normal distribution, with excellent practical results. In particular, because the Studentt distribution has an additional parameter, we can adjust the kurtosis of the data, providing robust estimates against extreme data. We propose a methodology based on a generalization of the standard Tobit model with errors following elliptical distributions. Diagnostics in the Tobit model with elliptical errors are developed. We derive residuals and global/local influence methods considering several perturbation schemes. This is important because different diagnostic methods can detect different atypical data. We implement the proposed methodology in an R package. We illustrate the methodology with realworld econometrical data by using the R package, which shows its potential applications. The Tobit model based on the Studentt distribution with a small quantity of degrees of freedom displays an excellent performance reducing the influence of extreme cases in the maximum likelihood estimates in the application presented. It provides new empirical evidence on the capabilities of the Studentt distribution for accommodation of atypical data.

Basu, S., Yawar, A., Concha, A., & Bandi, M. M. (2017). On angled bounceoff impact of a drop impinging on a flowing soap film. Fluid Dyn. Res., 49(6), 19 pp.
Abstract: Small drops impinging obliquely on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working intandem with the more commonplace hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are closetotangential, the bounceoff regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable threedimensional film, and the idealization invokes a phasebased parametric study. Angular inclination of the film and the ratio of post and preimpact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets (constituted from deionized water) impacting against an inclined soap film, flowing under constant pressure head. Modelpredicted phase domain for bounceoff compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipoles, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of waterwalking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3 and 1/3 of the imparted streamwise momentum. Considering the visually similar impulse actions, this theory, despite its assumption of a quiescent liquid bath of infinite depth, is applied to the drop bounceoff experiments, and the resultant shed vortex dipole momenta are compared to the momenta of the coherent vortex structures computed from particle imaging velocimetry data. The magnitudes reveal identical order (10(7) N s), suggesting that notwithstanding the disparities, the bounceoff regime may be tapped as a toy analog for impulsebased interfacial biolocomotion.

Belmonte, M., Hsieh, C. F., Campos, J. L., Guerrero, L., Mendez, R., MosqueraCorral, A., et al. (2017). Effect of Free Ammonia, Free Nitrous Acid, and Alkalinity on the Partial Nitrification of Pretreated Pig Slurry, Using an Alternating Oxic/Anoxic SBR. Biomed Res. Int., , 7 pp.
Abstract: The effect of free ammonia (NH3 or FA), free nitrous acid (HNO2 or FNA), and total alkalinity (TA) on the performance of a partial nitrification (PN) sequencing batch reactor (SBR) treating anaerobically pretreated pig slurry was studied. The SBR was operated under alternating oxic/anoxic (O/A) conditions and was fed during anoxic phases. This strategy allowed using organic matter to partially remove nitrite (NO2) andnitrate (NO3) generated during oxic phases. The desired NH4+ to NO2 ratioof 1.3gN/gNwas obtained when an Ammonium Loading Rate (ALR) of 0.09 gNH(4)(+)N/L d was applied. The system was operated at a solid retention time (SRT) of 1520 d and dissolved oxygen (DO) levels higher than 3 mg O2/L during the whole operational period. PN mainly occurred caused by the inhibitory effect of FNA on nitrite oxidizing bacteria (NOB). Once HNO2 concentration was negligible, NH4+ was fully oxidized to NO(3)()in spite of the presence of FA. The use of biomass acclimated to ammonium as inoculum avoided a possible effect of FA on NOB activity.

Bitran, E., Duarte, F., Fernandes, D., & Villena, M. J. (2017). Impacto del Plan Garantizado de Salud con prima comunitaria única en la demanda del seguro privado de salud en Chile. CEPAL Rev., 123, 225–244.
Abstract: En 2012 se envió al Congreso de Chile un Plan Garantizado de Salud para el sistema privado de salud, diseñado para ofrecer un plan de características estandarizadas y tarifa plana. En este trabajo se evalúa el impacto que tendría en la demanda de seguros de salud la introducción de este plan. Los resultados sugieren que la cartera del seguro privado disminuiría un 12,39%, lo que signifca que alrededor de 400.000 personas se cambiarían al sistema público, exacerbando el problema de selección adversa que enfrenta el sistema y acarreando un pasivo fscal de 200 millones de dólares anuales.

Bravo, M., Cominetti, R., & PavezSigne, M. (2018). Rates of convergence for inexact Krasnosel'skiiMann iterations in Banach spaces. Math. Program., to appear.

Cabrera, I., Villalon, J., & Chavez, J. (2017). Blending Communities and TeamBased Learning in a Programming Course. IEEE Trans. Educ., 60(4), 288–295.
Abstract: In recent years, engineering education teachers have needed to incorporate technologysupported collaboration to enhance learning. Implementing these activities requires course redesign, which must be meticulous for their full potential to be reached. This can require a lot of work for first time users, which can be a barrier to implementation. Educational design patterns alleviate this burden by facilitating new course design with practices demonstrated to promote student engagement. This paper reports on the redesign of an introductory programming course and its experimental evaluation. The redesign was based on the community of inquiry learning framework (CoL), using design patterns from online Web communities and teambased learning (TBL). The evaluation included 562 students, 117 of them randomly assigned to two different experimental groups. One group used a CoL approach, and the other a blended TBL and CoL methodology. The remaining students were assigned to control groups. Results showed that students in the experimental groups outperformed those in the control group by the end of the semester, while the experimental CoL and TBL methodology helped students achieve a higher level of understanding in a shorter period of time due to increased participation rates. These data provide empirical evidence of the learning gains offered by online learning communities, and the way in which educational design patterns can facilitate course redesign.

Caceres, C., Moffat, R., & Pakalnis, R. (2017). Evaluation of flexural failure of sill mats using classical beam theory and numerical models. Int. J. Rock Mech. Min. Sci., 99, 21–27.

Caceres, G., Fullenkamp, K., Montane, M., Naplocha, K., & Dmitruk, A. (2017). Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants. Energies, 10(9), 21 pp.
Abstract: In the present paper, the finite element method is used to perform an exhaustive analysis of the thermal behavior of encapsulated phase change materials (EPCMs), which includes an assessment of several materials in order to identify the best combination of PCM and shell material in terms of thermal energy storage, heat transfer rate, cost of materials, limit of pressure that they can support and other criteria. It is possible to enhance the heat transfer rate without a considerable decrease of the thermal energy storage density, by increasing the thickness of the shell. In the first examination of thermomechanical coupling effects, the technical feasibility can be determined if the EPCM dimensions are designed considering the thermal expansion and the tensile strength limit of the materials. Moreover, when a proper EPCM shell material and PCM composition is used, and compared with the current storage methods of concentrated solar power (CSP) plants, the use of EPCM allows one to enhance significantly the thermal storage, reaching more than 1.25 GJ/m(3) of energy density.

Canessa, E., & Chaigneau, S. (2017). Response surface methodology for estimating missing values in a pareto genetic algorithm used in parameter design. Ing. Invest., 37(2), 89–98.
Abstract: We present an improved Pareto Genetic Algorithm (PGA), which finds solutions to problems of robust design in multiresponse systems with 4 responses and as many as 10 control and 5 noise factors. Because some response values might not have been obtained in the robust design experiment and are needed in the search process, the PGA uses Response Surface Methodology (RSM) to estimate them. Not only the PGA delivered solutions that adequately adjusted the response means to their target values, and with low variability, but also found more Pareto efficient solutions than a previous version of the PGA. This improvement makes it easier to find solutions that meet the tradeoff among variance reduction, mean adjustment and economic considerations. Furthermore, RSM allows estimating outputs' means and variances in highly nonlinear systems, making the new PGA appropriate for such systems.

Canfora, F., Oh, S. H., & SalgadoRebolledo, P. (2017). Gravitational catalysis of merons in EinsteinYangMills theory. Phys. Rev. D, 96(8), 10 pp.
Abstract: We construct regular configurations of the EinsteinYangMills theory in various dimensions. The gauge field is of merontype: it is proportional to a pure gauge (with a suitable parameter lambda determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the threedimensional case we consider the inclusion of a ChernSimons term into the analysis, allowing lambda to be different from its usual value of 1/2. In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meronlike configurations can also be constructed by considering warped products of the threesphere and lowerdimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named “gravitational catalysis of merons”.

Canfora, F. E., Dudal, D., Justo, I. F., Pais, P., SalgadoRebolledo, P., Rosa, L., et al. (2017). Double nonperturbative gluon exchange: An update on the softPomeron contribution to pp scattering. Phys. Rev. C, 96(2), 8 pp.
Abstract: We employ a set of recent, theoretically motivated fits to nonperturbative unquenched gluon propagators to check on how far double gluon exchange can be used to describe the soft sector of pp scattering data (total and differential cross section). In particular, we use the refined GribovZwanziger gluon propagator (as arising from dealing with the Gribov gauge fixing ambiguity) and the massive Cornwalltype gluon propagator (as motivated from DysonSchwinger equations) in conjunction with a perturbative quarkgluon vertex, next to a model based on the nonperturbative quarkgluon MarisTandy vertex, popular from BetheSalpeter descriptions of hadronic bound states. We compare the cross sections arising from these models with older ISR and more recent TOTEM and ATLAS data. The lower the value of total energy root s, the better the results appear to be.
