
Goles, E., & Montealegre, P. (2015). The complexity of the majority rule on planar graphs. Adv. Appl. Math., 64, 111–123.
Abstract: We study the complexity of the majority rule on planar automata networks. We reduce a special case of the Monotone Circuit Value Problem to the prediction problem of determining if a vertex of a planar graph will change its state when the network is updated with the majority rule. (C) 2014 Elsevier Inc. All rights reserved.



Goles, E., & Moreira, A. (2012). NumberConserving Cellular Automata and Communication Complexity: A Numerical Exploration Beyond Elementary CAs. J. Cell. Autom., 7(2), 151–165.
Abstract: We perform a numerical exploration of numberconserving cellular automata (NCCA) beyond the class of elementary CAs, in search of examples with high communication complexity. We consider some possible generalizations of the elementary rule 184 (a minimal model of traffic, which is the only nontrivial elementary NCCA). as well as the classes of NCCAs which minimally extend either the radius or the state set (with respect to the 2 states and radius 1 of the elementary case). Both for 3 states and radius 1, and for 2 stales and radius 2, NCCA appear that are conjectured to have maximal (exponential) communication complexity. Examples are given also for (conjectured) linear and quadratic behaviour.



Goles, E., & Noual, M. (2012). Disjunctive networks and update schedules. Adv. Appl. Math., 48(5), 646–662.
Abstract: In this paper, we present a study of the dynamics of disjunctive networks under all blocksequential update schedules. We also present an extension of this study to more general fair periodic update schedules, that is, periodic update schedules that do not update some elements much more often than some others. Our main aim is to classify disjunctive networks according to the robustness of their dynamics with respect to changes of their update schedules. To study this robustness, we focus on one property, that of being able to cycle dynamically. (C) 2012 Elsevier Inc. All rights reserved.



Goles, E., & Palacios, A. G. (2007). Dynamical complexity in cognitive neural networks. Biol. Res., 40(4), 479–485.
Abstract: In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity.



Goles, E., & Rica, S. (2011). Irreversibility and spontaneous appearance of coherent behavior in reversible systems. Eur. Phys. J. D, 62(1), 127–137.
Abstract: There is empirical evidence that long time numerical simulations of conservative and reversible partial differential equations evolve, as a general rule (exceptions are the integrable models), towards an equilibrium state that is mainly a coherent structure plus small fluctuations inherent in the conservative and reversible character of the original system. The fluctuations account for the energy difference between the initial configuration and the one of the coherent structure. If the energy is not small enough, then the intrinsic fluctuations may destroy the coherent structure. Thus we arrive to the conclusion that a transition arises from a noncoherent state to a coherent structure as we decrease the initial energy below a critical value. This phenomenon has been successfully observed in various numerical simulations. In this article, we stress that this general behavior is also observed in reversible and conservative cellular automata as in the Q2R model. We point out that this conservative and reversible cellular automata is ab initio deterministic and therefore all our numerical computations are not affected by an approximation of any kind.



Goles, E., & Ruz, G. A. (2015). Dynamics of neural networks over undirected graphs. Neural Netw., 63, 156–169.
Abstract: In this paper we study the dynamical behavior of neural networks such that their interconnections are the incidence matrix of an undirected finite graph G = (V, E) (i.e., the weights belong to {0, 1}). The network may be updated synchronously (every node is updated at the same time), sequentially (nodes are updated one by one in a prescribed order) or in a blocksequential way (a mixture of the previous schemes). We characterize completely the attractors (fixed points or cycles). More precisely, we establish the convergence to fixed points related to a parameter alpha(G), taking into account the number of loops, edges, vertices as well as the minimum number of edges to remove from E in order to obtain a maximum bipartite graph. Roughly, alpha(G') < 0 for any G' subgraph of G implies the convergence to fixed points. Otherwise, cycles appear. Actually, for very simple networks (majority functions updated in a blocksequential scheme such that each block is of minimum cardinality two) we exhibit cycles with nonpolynomial periods. (C) 2014 Elsevier Ltd. All rights reserved.



Goles, E., & Salinas, L. (2008). Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci., 396(13), 247–253.
Abstract: In this article we study some aspects about the graph associated with parallel and serial behavior of a Boolean network. We conclude that the structure of the associated graph can give some information about the attractors of the network. We show that the length of the attractors of Boolean networks with a graph by layers is a power of two and under certain conditions the only attractors are fixed points. Also, we show that, under certain conditions, dynamical cycles are not the same for parallel and serial updates of the same Boolean network. (C) 2007 Elsevier B.V. All rights reserved.



Goles, E., & Salinas, L. (2010). Sequential operator for filtering cycles in Boolean networks. Adv. Appl. Math., 45(3), 346–358.
Abstract: Given a Boolean network without negative circuits, we propose a polynomial algorithm to build another network such that, when updated in parallel, it has the same fixed points than the original one, but it does not have any dynamical cycle. To achieve that, we apply a network transformation related to the sequential update. As a corollary, we can find a fixed point in polynomial time for this kind of networks. (C) 2010 Elsevier Inc. All rights reserved.



Goles, E., Guillon, P., & Rapaport, I. (2011). Traced communication complexity of cellular automata. Theor. Comput. Sci., 412(30), 3906–3916.
Abstract: We study cellular automata with respect to a new communication complexity problem: each of two players know half of some finite word, and must be able to tell whether the state of the central cell will follow a given evolution, by communicating as little as possible between each other. We present some links with classical dynamical concepts, especially equicontinuity, expansivity, entropy and give the asymptotic communication complexity of most elementary cellular automata. (C) 2011 Elsevier B.V. All rights reserved.



Goles, E., Meunier, P. E., Rapaport, I., & Theyssier, G. (2011). Communication complexity and intrinsic universality in cellular automata. Theor. Comput. Sci., 412(12), 2–21.
Abstract: The notions of universality and completeness are central in the theories of computation and computational complexity. However, proving lower bounds and necessary conditions remains hard in most cases. In this article, we introduce necessary conditions for a cellular automaton to be “universal”, according to a precise notion of simulation, related both to the dynamics of cellular automata and to their computational power. This notion of simulation relies on simple operations of spacetime rescaling and it is intrinsic to the model of cellular automata. intrinsic universality, the derived notion, is stronger than Turing universality, but more uniform, and easier to define and study. Our approach builds upon the notion of communication complexity, which was primarily designed to study parallel programs, and thus is, as we show in this article, particulary well suited to the study of cellular automata: it allowed us to show, by studying natural problems on the dynamics of cellular automata, that several classes of cellular automata, as well as many natural (elementary) examples, were not intrinsically universal. (C) 2010 Elsevier B.V. All rights reserved.



Goles, E., Montalva, M., & Ruz, G. A. (2013). Deconstruction and Dynamical Robustness of Regulatory Networks: Application to the Yeast Cell Cycle Networks. Bull. Math. Biol., 75(6), 939–966.
Abstract: Analyzing all the deterministic dynamics of a Boolean regulatory network is a difficult problem since it grows exponentially with the number of nodes. In this paper, we present mathematical and computational tools for analyzing the complete deterministic dynamics of Boolean regulatory networks. For this, the notion of alliance is introduced, which is a subconfiguration of states that remains fixed regardless of the values of the other nodes. Also, equivalent classes are considered, which are sets of updating schedules which have the same dynamics. Using these techniques, we analyze two yeast cell cycle models. Results show the effectiveness of the proposed tools for analyzing update robustness as well as the discovery of new information related to the attractors of the yeast cell cycle models considering all the possible deterministic dynamics, which previously have only been studied considering the parallel updating scheme.



Goles, E., MontalvaMedel, M., Mortveit, H., & RamirezFlandes, S. (2015). Block Invariance in Elementary Cellular Automata. J. Cell. Autom., 10(12), 119–135.
Abstract: Consider an elementary cellular automaton (ECA) under periodic boundary conditions. Given an arbitrary partition of the set of vertices we consider the block updating, i.e. the automaton's local function is applied from the first to the last set of the partition such that vertices belonging to the same set are updated synchronously. The automaton is said blockinvariant if the set of periodic configurations is independent of the choice of the block updating. When the sets of the partition are singletons we have the sequential updating: vertices are updated one by one following a permutation pi. In [5] the authors analyzed the piinvariance of the 2(8) = 256 possible ECA rules (or the 88 nonredundant rules subset). Their main result was that for all n > 3, exactly 41 of these nonredundant rules are piinvariant. In this paper we determine the subset of these 41 rules that are block invariant. More precisely, for all n > 3, exactly 15 of these rules are block invariant. Moreover, we deduce that block invariance also implies that the attractor structure itself is independent of the choice of the block update.



Goles, E., Montealegre, P., Salo, V., & Torma, I. (2016). PSPACEcompleteness of majority automata networks. Theor. Comput. Sci., 609, 118–128.
Abstract: We study the dynamics of majority automata networks when the vertices are updated according to a block sequential updating scheme. In particular, we show that the complexity of the problem of predicting an eventual state change in some vertex, given an initial configuration, is PSPACEcomplete. (C) 2015 Elsevier B.V. All rights reserved.



Goles, E., Montealegre, P., & Vera, J. (2016). Naming Game Automata Networks. J. Cell. Autom., 11(56), 497–521.
Abstract: In this paper we introduce automata networks to model some features of the emergence of a vocabulary related with the naming game model. We study the dynamical behaviour (attractors and convergence) of extremal and majority local functions.



Goles, E., MontealegreBarba, P., & Todinca, I. (2013). The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci., 504, 73–82.
Abstract: We study the problem of predicting the state of a vertex in automata networks, where the state at each site is given by the majority function over its neighborhood. We show that for networks with maximum degree greater than 5 the problem is PComplete, simulating a monotone Boolean circuit. Then, we show that the problem for networks with no vertex with degree greater than 4 is in NC, giving a fast parallel algorithm. Finally, we apply the result to the study of related problems. (C) 2012 Elsevier B.V. All rights reserved.



Goles, E., Moreira, A., & Rapaport, I. (2011). Communication complexity in numberconserving and monotone cellular automata. Theor. Comput. Sci., 412(29), 3616–3628.
Abstract: One third of the elementary cellular automata (CAs) are either numberconserving (NCCAs) or monotone (increasing or decreasing). In this paper we prove that, for all of them, we can find linear or constant communication protocols for the prediction problem. In other words, we are able to give a succinct description for their dynamics. This is not necessarily true for general NCCAs. In fact, we also show how to explicitly construct, from any CA, a new NCCA which preserves the original communication complexity. (C) 2011 Elsevier B.V. All rights reserved.



Gomez, A. J., Gonzalez, S., & Sorella, S. P. (2016). YangMillsChernSimons system in the presence of a Gribov horizon with fundamental Higgs matter. J. Phys. AMath. Theor., 49(6), 10 pp.
Abstract: In this work we study the behaviour of YangMillsChernSimons theory coupled to a Higgs field in the fundamental representation by taking into account the effects of the presence of the Gribov horizon. By analyzing the infrared structure of the gauge field propagator, both confined and deconfined regions can be detected. The confined region corresponds to the appearance of complex poles in the propagators, while the deconfined one to the presence of real poles. One can move from one region to another by changing the parameters of the theory.



Gonzalez, E., & Villena, M. (2011). Spatial Lanchester models. Eur. J. Oper. Res., 210(3), 706–715.
Abstract: Lanchester equations have been widely used to model combat for many years, nevertheless, one of their most important limitations has been their failure to model the spatial dimension of the problems. Despite the fact that some efforts have been made in order to overcome this drawback, mainly through the use of ReactionDiffusion equations, there is not yet a consistently clear theoretical framework linking Lanchester equations with these physical systems, apart from similarity. In this paper, a spatial modeling of Lanchester equations is conceptualized on the basis of explicit movement dynamics and balance of forces, ensuring stability and theoretical consistency with the original model. This formulation allows a better understanding and interpretation of the problem, thus improving the current treatment, modeling and comprehension of warfare applications. Finally, as a numerical illustration, a new spatial model of responsive movement is developed, confirming that location influences the results of modeling attrition conflict between two opposite forces. (C) 2010 Elsevier B.V. All rights reserved.



Gonzalez, E., & Villena, M. J. (2011). Spatial attrition modeling: Stability conditions for a 2D + t FD formulation. Comput. Math. Appl., 61(11), 3246–3257.
Abstract: A new general formulation for the spatial modeling of combat is presented, where the main drivers are movement attitudes and struggle evolution. This model in its simplest form is represented by a linear set of two coupled partial differential equations for two independent functions of the space and time variables. Even though the problem has a linear shape, nonnegative values for the two functions render this problem as nonlinear. In contrast with other attempts, this model ensures stability and theoretical consistency with the original Lanchester Equations, allowing for a better understanding and interpretation of the spatial modeling. As a numerical illustration a simple combat situation is developed. The model is calibrated to simulate different troop movement tactics that allow an invader force to provoke maximum damage at a minimum cost. The analysis provided here reviews the tradeoff between spatial grid and time stepping for attrition cases and then extends it to a new method for guaranteeing good numerical behavior when the solution is expected to grow along the time variable. There is a wide variety of spatial problems that could benefit from this analysis. (C) 2011 Elsevier Ltd. All rights reserved.



Gonzalez, E., Epstein, L. D., & Godoy, V. (2012). Optimal number of bypasses: minimizing cost of calls to wireless phones under Calling Party Pays. Ann. Oper. Res., 199(1), 179–191.
Abstract: In telecommunications, Calling Party Pays is a billing formula that prescribes that the person who makes the call pays its full cost. Under CPP landline to wireless phone calls have a high cost for many organizations. They can reduce this cost at the expense of installing wireless bypasses to replace landline to wireless traffic with wirelesstowireless traffic, when the latter is cheaper than the former. Thus, for a given timehorizon, the cost of the project is a tradeoff between traffic towireless and the number of bypasses. We present a method to determine the number of bypasses that minimizes the expected cost of the project. This method takes into account hourly varying traffic intensity. Our method takes advantage of parallels with inventory models for rental items. Examples illustrate the economic value of our approach.

