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Abstract Ensemble learning has gained considerable

attention in different learning tasks including regression,

classification, and clustering problems. One of the draw-

backs of the ensemble is the high computational cost of

training stages. Resampling local negative correlation

(RLNC) is a technique that combines two well-known

methods to generate ensemble diversity—resampling and

error negative correlation—and a fine-grain parallel

approach that allows us to achieve a satisfactory balance

between accuracy and efficiency. In this paper, we intro-

duce a structure of the virtual machine aimed to test diverse

selection strategies of parameters in neural ensemble

designs, such as RLNC. We assess the parallel performance

of this approach on a virtual machine cluster based on the

full virtualization paradigm, using speedup and efficiency

as performance metrics, for different numbers of proces-

sors and training data sizes.

Keywords Ensemble learning �Artificial neural networks �
Virtualization �Multicore processor � Parallel algorithms

1 Introduction

In the last years, model combining or ensemble modeling

has become a topic of interest in the artificial neural net-

works field [1, 15, 16, 26]. The basic idea of this multi-

model approach is to select a set of N predictors S ¼
ff0; f1; . . .; fN�1g and build an aggregation function F using

an operator that combines the individual decisions.

For classification problems, the most common aggre-

gation function F is the majority voting, while, for

regression, the most common one is the weighted average

of the individual outputs, where given
P

wi ¼ 1ð Þ

FðxÞ ¼
XN�1

i¼0

wifiðxÞ: ð1Þ

Both theoretical and empirical findings have suggested

that the combination of different models can be an effective

way to obtain better predictive performance compared

with the use of individual predictors, especially when the

combination of models exhibits a sort of heterogeneity or

diversity. For regression settings, the error ei of each

machine that is usually calculated as the squared difference

between the output of the machine fi and the actual output y,

ei ¼ y� fið Þ2; ð2Þ

where ei is offset by the error of other machine, thus the

ensemble output F will be more accurate than an individual

machine output. To generate diversity on ensembles, sev-

eral ways exist, for example, the use of different initiali-

zation of the weights and biases of individual neural

networks, different training algorithms to adjust weights

and biases, different architectures in each neural network,

different training sets, and enhancement of the negative

correlation of error among the learners.
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Resampling local negative correlation learning (RLNC)

[18] is an algorithm for regression settings that combines

the two learning strategies indicated above, diversity and

stability, obtained by resampling. This algorithm creates a

kind of local negative correlation between the individual

errors to get a set of diverse predictors. Resampling allows

this base algorithm to control the impact of highly influ-

ential data points which in turns can improve its general-

ization error. The resulting approach can also be explained

as a generalization of Bagging [3], in which each learner is

no longer independent but locally coupled with other

learners. RLNC has demonstrated to have competitive

generalization ability when compared with well-known

ensemble algorithms.

A parallel implementation of RLNC [22] reduces con-

siderably the training process time, taking advantage of the

underlying parallelism of the algorithm and the new gen-

eration of multicore processor architecture. In addition, it

creates new possibilities to explode the potentials of cal-

culus and parallel processing, but one of its limits is

undoubtedly to obtain real benefits regarding speedup and

performance metrics of this architecture. A high percentage

of the most important high-performance computing (HPC)

centers in the world have used this new architecture, and

many others have begun to migrate from single-core pro-

cessors to multicore processors [10].

Virtualization [8] consists in adding a software layer

between the operating system and the hardware, denom-

inated ‘‘Virtual Machine Monitor’’ (VMM). This inter-

mediate layer allows the installation of diverse operating

systems and allows the management operations of phys-

ical and logical resources to be transparent to each sys-

tem. Virtualization has proliferated quickly in academic

[13] and industry fields [19] because it has contributed to

avoid the investments in new hardware, to improve the

use of physical platform and to reduce the testing time

and the production of new applications or legacy systems.

The use of virtualization is diverse and extensive. It can

be applied to a group of several operating systems in the

same physical machine as well as to a whole-data center,

including several hardware and software architectures,

applications and networks. In a number of specialized

researches, the level of communication and some mea-

sures of performance have been analyzed [6, 21, 24], but

the impact on the performance is not clear when virtu-

alization is introduced on parallel applications, making

necessary to perform optimizations even in HPC envi-

ronments [14].

This paper introduces an analysis of the behavior of

RLNC using parallel performance metrics on a virtual

machine cluster. To perform this analysis, a comparative

study between virtual and physical machine cluster must be

carried out, in which the parallel approach of RNLC is

executed with the same configurations in both environ-

ments to determinate the effects on parallel performance

introduced by virtualization.

This paper is arranged as follows: the next section

describes the concepts of diversity and negative correlation

to consecutively present the RLNC algorithm that com-

bines both properties. Section 3 presents the parallel

implementation for RLNC on a virtual environment.

Section 4 presents the configuration of the testing of

environment and the discussion of the experimental results.

Finally, Sect. 5 presents the findings and future work.

2 Resampling local correlation learning (RLNC)

For estimating regression, a theoretical approach to mea-

sure diversity is the so-called Ambiguity Decomposition [5]

of the quadratic loss of an ensemble F that is obtained

using Eq. (1). This decomposition states that

�e ¼ y� Fð Þ2¼
XN�1

i¼0

wi y� fið Þ2�
XN�1

i¼0

wi F � fið Þ2: ð3Þ

The ensemble error of �e can be divided into two terms: the

first term reflects the weighted squared error of each

machine, i.e., the weighted sum of individual errors on the

target y. The second term is called ambiguous term, which

corresponds to the error of each machine regarding the

joint output F in the ensemble. It can be alternatively stated

as [17]

y� Fð Þ2¼
XN�1

i¼0

w2
i ðy� fiÞ2 þ

XN�1

i¼0

X

j 6¼i

wiwjðfi � yÞðfj � yÞ:

ð4Þ

As in the ambiguity decomposition, the first term measures

the individual performance of the estimators, while the

second one measures the error correlation between the

different predictors. Considering an ensemble where all

learners are uniformly weighted, from this decomposition it

seems proper to train each learner i ¼ 0; . . .;N � 1 with the

training function

~ei ¼ ðy� fiÞ2 þ g
X

j6¼i

ðfi � yÞðfj � yÞ; ð5Þ

where g[ 0 controls the balance between individual

performance and the amount of diversity among

individual learners. Ensemble diversity can be generated

using a set of locally coupled learners. Each learner fi is

related to a reduced and fixed subset of other learners Vi

through the definition of a linear neighborhood function of

order m.

wði; jÞ¼ 1,ði� jÞmod N�m or ðj� iÞmod N�m; ð6Þ
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In that way, the learner fj belongs to the neighborhood

Vi of fi only if w(i, j) = 1. Geometrically speaking, the

learners are disposed on a ring, in which two learners are

neighbors if they are contiguous up to m steps.

The objective function (5) can be made local by

restricting it to the neighborhood of the i-th learner

elocal
i ¼ ðy� fiÞ2 þ g

X

j2Vi

ðfi � yÞðfj � yÞ: ð7Þ

The interesting result is that in [17] the authors affirm that

training synchronously the set of learners with these local

objective functions is independent of the neighborhood

order m. This means that a minimal degree of overlapping

(m = 1) between the learners is enough to propagate the

information about the performance of each learner to the

whole group.

The manipulation of the training data to be learned for

each ensemble member is a commonly used method. Dif-

ferent learners are provided with different training exam-

ples or different training features to learn different

‘‘aspects’’ about the same task. In this family of ensemble

algorithms, resampling methods have proved to be highly

effective. In Bagging, each learner is provided with a set of

patterns obtained by randomly resampling the original set

of examples and then trained independently from the other

learners. Despite the simplicity of this approach, the results

of the algorithm are, in many cases, superior to more

elaborated algorithms.

The important fact is that certain sampling schemes

allow some points to affect only a subset of learners in the

ensemble. Empirical evidence suggests that Bagging

equalizes the influence of training points in the estimation

procedure in such a way that highly influential points (the

so-called leverage points) are down-weighted [11]. Since in

most situations, leverage points are badly influential,

Bagging can improve generalization by making robust an

unstable base learner. From this point of view, resampling

has an effect similar to robust M-estimators, where the

influence of sample points is (globally) bounded using

appropriate loss functions, for example Huber’s robust loss

or Tukey’s bisquare loss.

Since in uniform resampling, all the points in the sample

have the same probability of being selected, it seems

counterintuitive that Bagging has the ability to selectively

reduce the influence of leverage points. The explanation is

in the nature of leverage points itself. Leverage points are

usually isolated in the feature space while non-leverage

points act in groups. To remove the influence of a leverage

point, the elimination of this point from the sample is

enough, but to remove the influence of a non-leverage

point, the general removal of a group of observations is

essential. Furthermore, the probability that a group of size

k be completely ignored by Bagging is (1 - k/m)m,

which decays exponentially with k. For k = 2, for example

(1 - k/m)m * 0.14 while (1 - 1/m)m * 0.37.

In RLNC [18], each learner works with a different set of

training patterns obtained by randomly resampling the

original set of examples. Resampling allows to restrict the

influence of leverage points to only a subset of learners in

the ensemble, while the training criterion (7) still encour-

ages cooperation between learners. As depicted in Algo-

rithm 1, at each iteration, each learner takes into account

the performance of the group only regarding to its own set

of training patterns. Then, the influence of each training

pattern is restricted to the learners whose training set

contains the point.

As stated before, g controls the predominance of the

group performance with regard to the individual perfor-

mance. It should be noted that if g = 0, Bagging is

obtained, that is, the learners are trained independently

without any information about the group performance.

If g[ 0, this information is incorporated to the estimation

process and an explicitly cooperative ensemble is obtained.

In each iteration, the neural networks receive the

information of its neighborhood to update the weights and

biases in order to the minimize the objective function (8).

Algorithm 1 RLNC

1: Let D ¼ fðxi; yiÞ; i ¼ 1; . . .;mg be a set of training patterns

2: Let fi, i ¼ 0; . . .;N � 1 be a set of n learners and fi
t the function implemented by the learner fi at time t ¼ 0; . . .;T

3: Let Vi be the neighborhood of fi

4: Obtain fi
0 applying one epoch of a gradient descend algorithm to minimize the square error

5: Generate n new samples Di, i ¼ 1; . . .; n sampling randomly with the replacement of the original set of examples D

6: for t = 1 to Q do

7: Perform one epoch on the learner fi with the learning function

et
i ¼ y� fið Þ2þg

P

j2Vi

fi � yð Þ f t�1
j � y

� �
(8)

and the set of examples Di

8: end for

9: Set the ensemble at time t to be FðxÞ ¼ 1=n
Pn�1

i¼0 fiðxÞ
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It suggests that RLNC has a fine-grain parallelism

approach due to the training process requires relatively

small amounts of computational work among communi-

cation events.

3 RLNC on virtual multicore cluster

A parallel computer or cluster of computers, consists of a

set of computers, generally homogeneous, interconnected

by a communication channel and works as a single large

computer [7] to implement programs that require large

computing capabilities or require more computing units

working concurrently. The cluster processing takes place in

the compute nodes. Each node is an independent compu-

tation unit. The computation is performed using a master–

slave scheme, in which the execution is performed by the

slave nodes and the process of coordination among slaves

is performed by the master. A master–slave processing

scheme is used in the parallel implementation of RLNC,

this master–slave processing is commonly used in Message

Passing Interface (MPI) [12].

There are several ways to implement virtualization, one

of the most known is paravirtualization, a concept intro-

duced in [25]. Paravirtualization or ring scheme [2] con-

sists of dynamically assigning execution privileges or rings

to each virtual operating system, in which value zero has

the most privileges, so that this value is used by the hy-

pervisor, who supervises the execution of tasks and the

management of resources (logical and physical) of all

virtual machines. Another way is the full virtualization

using binary translation which consists of implementing

virtualization using a combination between binary trans-

lation and direct execution techniques. This approach

translates the kernel code to replace non-virtualizable

instructions with other instruction set that has the same

effect in the virtual hardware, while the code level is

directly executed on the processor. The combination of

both techniques provides full virtualization, thus the guest

OS is completely decoupled from the underlying hardware

by the virtualization layer.

In this work, a virtual cluster environment is set up using

a full virtualization approach with VirtualBox [23] as vir-

tual machine monitor, to create a flexible cluster setting

through a set of virtual machines. This set supports a neural

network ensemble, in which each learner, composed by

three layers with five sigmoidal hidden units, is trained

with standard backpropagation.

The algorithm includes the performance of several

activities, such as the partitioning of data for training and

testing, the resampling, the initialization of all neural net-

works in the ensemble, and the training of each neural

network using the Eq. (7) as the training rule. The diversity

is enhanced with the receiving information from the out-

puts of each learner that belongs to its neighborhood (Vi),

where the training process of each learner is carried out

with a bootstrap sample from the initial data set. The

algorithm uses a ring structure for representing the inter-

actions of each neural network with its neighborhood by

sending and receiving messages. This operation is per-

formed in parallel by all neural networks. The communi-

cations between each neural network and its neighbors

takes place at this point.

At a bigger size of m, the communication time increases

until to reach the worst performance case, when m ¼ N
2

� �
, at

this point (all to all), broadcast is performed. This produces

an effect of ‘‘cloud of messages’’, thus a neighborhood with

order m = 1 is selected, because it allows the minimization

of the communication time. Given the previously described

features, the algorithm is presented as follows:

Figure 1 shows a diagram of a parallel layout of RLNC.

1. The training data set—input parameter to algorithm—is

resampled in N files by the master process and located in a

Network File System (NFS), from which each file is read

by the respective slave process. According to this, a one-to-

one relationship between slave processes and files is

established.

The training process is accomplished in a number of

(fixed) iterations. In each iteration, a slave process sends its

information fi(x
0) regarding the predictions on data set of

neighbors 8x0 2 D j. Then, the slave process receives

information fjðxÞ; j 2 Vi from its neighbors regarding the

predictions 8x 2 Di in the local data set obtained in the

previous step, in order to update the weights and biases,

according to the learning function (7).

Once the training process has been completed, each

slave sends its predictions for each example x of the

testing set to the master, in order to calculate the output

ensemble, using the aggregation function F(x) described

in Eq. (1).

Algorithm 2 RLNC Training of i-th learner

1: Define Vi as described in equation (6)

2: Load Di and DJ 8j 2 Vi

3: for t = 1 to T do

4: for j 2 Vi do

5: SEND fi(x) 8x 2 Dj to learner j

6: end for

7: for j 2 Vido

8: RECV fj
t-1 from learner j

9: end for

10: Perform one epoch with learning function in equation (8)

11: end for

538 Neural Comput & Applic (2012) 21:535–542

123



4 Experimental results

In this section, we present an experimental section in which

a comparison between own proposal virtual structure and

the physical structure. A description of parameters and the

environment software and hardware is shown. A parallel

assessment that considers the scalability and efficiency

both physical and virtual environment is made. The com-

parison between execution environments considers both the

size of the problem and number of processors. Table 1

shows a brief description of the parameters.

The experiment results were obtained using the fol-

lowing configurations for hardware and software:

– Hardware: six computers with the following

specifications:

– Processor: Intel Core2 Quad CPU Q9400 @

2.66GHz

– Memory: 4 GB

– Network Interconnect: Gigabit Ethernet

– Software:

– Operating System: Centos 5.4 x86_64

– Kernel Version: 2.6.18

– Compiler: Intel icc 10.1

– MPI Library: Mpich2 1.1.1

– NFS Server:

– Processor: Intel Core2 CPU E7400 @ 2.8GHz

– Memory: 3 GB

– Network Interconnect: Gigabit Ethernet

– Operating System: Ubuntu 9.10 x86_64

– Kernel Version: 2.6.31

The configuration of the multicore cluster used in this work

consists of six computation nodes that use Intel quadcore

processors, each one has the same hardware and software

versions, one NFS server and one GigaEthernet switch,

where has been implemented a LAM/MPI cluster [20].

Virtualbox has been installed in each compute node. One

virtual machine has been created using the same hard-

ware and software versions used for the physical compute

nodes.

The performance results of physical and virtual envi-

ronment and a comparison between them are shown using

Friedman data set [9], this analysis takes into account the

performance metrics, speedup, and efficiency. The execu-

tion time for each experiment was obtained by an average

of 20 runs. Two curves are shown for each environment in

order to present the algorithm behavior when the number of

Fig. 1 Parallel processing of RLNC

Table 1 Algorithm parameters
Parameter Description Values

p Number of processors (cores) {1, 2, 3, 4, 6, 8, 12, 16, 20, 24}

N Number of machines in the ensemble 50 (fixed)

m Neighborhood order 1 (fixed)

m Size of the problem (number of inputs) f250; 500; . . .; 2; 500g
Q Number of iterations during training 100 (fixed)

g Influence of neighborhood in training process 0.95 (fixed)

b Number of executions of each experiment 10 (fixed)
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processors (p) is increased, while the number of inputs

(m) is fixed.

Figure 2 shows the empiric computational complexity,

using one processor, obtained from both physical and vir-

tual clusters. It shows that the overhead introduced by the

virtualization widens as m grows, which is reflected as an

increase in the differences between execution times.

Figure 3a and b show the behavior of the algorithm in

terms of scalability. It can be observed that over 750 data

inputs the algorithm begins to obtain good scalability and

efficiency—over 80%—due to the increase in the number

of processors, the efficiency decreases slowly; this is a

characteristic behavior of parallel algorithms. Figure 3c

and d show the variations of efficiency concerning the

increase in the number of processors. The curves for

m 2 f250; 500g fall rapidly, obtaining values of efficiency

under 80%, it is observed that these curves tend to separate

gradually one from the other.

Given the speedup reached by RLNC and according to

[4], the algorithm has good scalability, so that it has the

potential to explode the parallelism; it allows scaling the

training process to a larger number of data inputs.

In this implementation N [ p, each processor performs

more than one MPI process. The node–core combination,

used in the experiment, suggests that by this particular

parallel approach, it can be obtained better results in terms

of execution time, when the node–core combination gives

more weight to the distribution in more nodes rather than

the intensive use of all available cores in each node. An

average result correspond to the balance between nodes

and cores, for example, the use of 6 processors composed

by 3 nodes using 2 cores in each node. This permits to

obtain better execution time than the use of 2 nodes and 3

cores in each node. The best combination can be obtained
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Fig. 3 Results obtained from parallel performance evaluation on physical cluster: the behavior of speedup v/s p with fixed values of m is shown

in (a) and (b), where the dotted line denotes the linear speedup. The behavior of efficiency v/s p with values of m fixed is shown in (c) and (d)
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using 6 nodes with 1 core in each node. When p� 12, the

best node–core combination was used, according to the

selection criteria previously explained. In other cases,

when p = {16, 20, 24}, all cores available per node are

used, which introduces an additional overhead to the

operating system scheduler.

Figure 4 shows the behavior in terms of scalability and

variations of efficiency on virtual machine cluster.

Figure 4a and b show the scalability, in which the overhead

introduced by the use of all cores per node, when

p = {16, 20, 24}, decreases its scaling potential.

Figure 4c and d show the variations of the efficiency in

our virtual cluster environment. Considering the overhead

introduced by virtualization, results are similar in most

cases, when p� 12, showing an efficiency difference of the

physical environment lower than 15%; except when

m = 250; in this case, a poor efficiency in the virtual

environment is observed.

In a physical environment using m� 750, the efficiency

reaches values over 80% when p� 12; henceforth, the

efficiency falls faster due to the overhead produced by the

use of all cores available in each node when executing

the parallel algorithm. This decreases the resources avail-

able for carrying out the tasks of the virtualized operating

system.

The previously described overhead—with the 6 compute

nodes cluster—can be reduced by including more compute

nodes in the cluster, which allows, for instance, to achieve

p = 16 cores by the use of a combination of 8 compute

nodes and 2 cores per node. This occurs because RLNC

performs better when the node–core combination leaves

some cores available in each compute node.

5 Conclusions and future work

In this work, we have presented a testing environment

generated by a full virtualization approach in which both

parameter control and execution are carried out.

Comparable results are obtained between virtual and

physical environments, taking into account the execution of

the algorithm using a node–core configuration that allows

having at least one core available for the virtual OS tasks.

These node–core combinations have less overhead than

those ones that use all cores on each node.

The results obtained in this research are associated with

a specific type of virtualization and virtual machine mon-

itor (VirtualBox); therefore, future work will be aimed to

extend this research to other virtual environments, such as

Xen and VMWare, a HPC cluster with better performance
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Fig. 4 Results obtained from parallel performance evaluation on virtual cluster: speedup v/s p in Figures (a) and (b), where the dotted line
denotes the linear speedup. Figures (c) and (d) show efficiency v/s number of cores p
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than the cluster environment available to the development

of this research. This new cluster allows us to obtain results

from a larger amount of data inputs. In addition, it would

be interesting to study the way in which virtualization

allows the construction of a flexible cluster testing envi-

ronment adaptable to the ensemble structure. This study

would allow us to perform research such as behavior

analysis, parameter control, cross-validation, and testing

new approaches of ensembles of neural networks.
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