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In this paper, we present a study of the dynamics of disjunctive
networks under all block-sequential update schedules. We also
present an extension of this study to more general fair periodic
update schedules, that is, periodic update schedules that do not
update some elements much more often than some others. Our
main aim is to classify disjunctive networks according to the
robustness of their dynamics with respect to changes of their
update schedules. To study this robustness, we focus on one
property, that of being able to cycle dynamically.
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0. Introduction

Set in the framework of discrete dynamical systems seen as models of biological regulation net-
works, this article studies the dynamics of disjunctive automata networks under different update
schedules. Since discrete models of regulation networks were introduced [13,14,20], many studies
of the dynamical properties of general and particular automata networks have been carried out [4,
6,10,11,15,17,18]. Many of them have focused on dynamics that are induced either by a sequential
updating of the elements of the networks, either by a parallel updating, or by both.

In the case of genetic regulation networks, for instance, although biological knowledge about
the precise updating schedules of network components lack, one may argue reasonably that genes
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involved in a same cellular physiological function are highly unlikely to perform their regulations in
perfect synchrony. Biologists, however, seem to agree that a certain amount of synchrony is not, on
the whole, implausible [2,22]. Thus, it seams interesting to study updating modes that are somewhere
between total synchrony and total asynchrony. A now classical generalisation of the parallel and se-
quential update schedules has been introduced by F. Robert [19]. These more general update schedules
are known as block-sequential update schedules.1 They define blocks of elements of a network whose
states are to be updated in parallel while the block themselves are updated sequentially and they do
so in a way that every element is updated exactly once during one update sequence. In [9], following
a conjecture expressed by Thomas [21] concerning the role of underlying cycles in the dynamics of
a network, we studied exhaustively and characterised the dynamics of Boolean automata networks
whose underlying structures are directed cycles under all block-sequential update schedules. Here, we
take a different approach.

Instead of restricting the underlying structure of the networks we study, we chose to focus on a
particular instance of Boolean automata networks, namely disjunctive networks. One particularity of
these networks make them an interesting starting point to answer some questions that reveal them-
selves yet too thorny for general Boolean automata networks: the fact that their underlying structures
translate completely and straightforwardly every dependency between elements states. The purpose
of the work we present here is thus to understand the dynamics of disjunctive networks under all
block-sequential update schedules (Section 2) and more generally under all fair periodic update sched-
ules (Section 3), that is, periodic update schedules that do not update some elements much more often
than some others. To build this understanding, we set the aim of classifying disjunctive networks ac-
cording to the robustness of their dynamics with respect to changes of their update schedules. To
study this robustness, we focus on one property, that of being able to cycle dynamically. After a pre-
liminary section of definitions (Section 1), in Section 2, we present our study of disjunctive networks
under arbitrary block-sequential update schedules and generalise the particular case of disjunctive
networks updated in parallel as studied in [8,12]. In the following section, Section 3, we extend this
study to all fair update schedules and propose a classification of networks based on the classifica-
tion suggested by Elena [7]. We also point out, the differences of our notion of robustness when
we consider all fair periodic update schedules and when we only consider block-sequential update
schedules.

1. Definitions

1.1. Disjunctive networks

A disjunctive network of size n is defined by a digraph G = (V , A) of order |V | = n. The nodes of
this digraph are assimilated to the elements of the network. Abusing language, we speak indifferently
of the digraph or network G . In the sequel, we use the following notation

∀m ∈N, N<m = {0, . . . ,m − 1}

and the convention that, in the general case, the set of nodes of a disjunctive network G = (V , A)

equals V = N<n .
The set of nodes and the set of arcs of a subdigraph H of an arbitrary digraph G = (V , A) are

denoted respectively by V H and AH . In particular, strongly connected components are denoted by
C = (V C , AC ) and are said to be non-trivial if they contain at least one arc. Thus, non-trivial strongly
connected components either are loop-nodes (i.e. nodes i ∈ V with a loop (i, i) ∈ A) or contain several
nodes. Paths P ji from a node j to a node i are denoted by the ordered list {i = i0, i1, . . . , i� = j} of
nodes they involve. By default, they are supposed to be directed so that ∀k < �, (ik, ik+1) ∈ A is an
arc. Otherwise, when it is specified that P ji is undirected, it is supposed that ∀k < �, either (ik, ik+1)

is an arc, or (ik+1, ik) is. Closed pathes are called cycles. For a cycle C = {i0, i1, . . . , i� = i0}, we denote

1 F. Robert called them série-parallèle.
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by VC the set of nodes in C . Cycles are not supposed here to be necessarily simple so it may be that
∃k,k′ � � such that k �= k′ and ik = ik′ . Thus, in the general case, {ik | k ∈ N/�N} is a multiset with
underlying set VC . Cycles are not supposed either to run at most once through each arc: it may be
that ∃k,k′ � � such that k �= k′ and (ik, ik + 1) = (ik′ , ik′+1). Generally, the set of arcs of a cycle C ,
which is denoted by AC , is the underlying set of the multiset {(ik, ik+1) | k ∈N/�N}.

As in any Boolean automata network, nodes in a disjunctive network can take two states, either 0
or 1. Thus, if n is the size of the network, then {0,1}n is the set of network configurations. For any
network configuration x = (x0 . . . , xn−1) ∈ {0,1}n , the coefficient xi is the state of node i ∈ V . More
generally, if H = (V H , AH ) is a subdigraph of G , then xH denotes the configuration of H , i.e. the
restriction of x to the coefficients xi , i ∈ V H . When all nodes of a digraph or subdigraph of size n have
the same state a ∈ {0,1}, its configuration is written an .

In a digraph G = (V , A), the in- (resp. out-) neighbourhood of a node i ∈ V is the set of nodes
defined and denoted by N−

G (i) = { j ∈ V | ( j, i) ∈ A} (resp. N+
G (i) = { j ∈ V | (i, j) ∈ A}). The in- (resp.

out-) degree of i is the cardinal of this set, denoted by deg−
G (i) (resp. by deg+

G (i)). Arcs of the set A
represent dependencies between automata states which are specified by the local transition functions
fi that are associated to each node i:

f i :
{ {0,1}n → {0,1},

x 	→ ∨
j∈N−

G (i) x j .
(1)

The idea is that if x is the current network configuration and if the state of node i is updated, then it
becomes f i(x). In other words, i takes state 1 if and only if ∃ j ∈ N−

G (i), x j = 1. Let us note that a gen-
eral Boolean automata network is defined similarly. The only difference is that f i can be any Boolean
function satisfying (i, j) ∈ A ⇔ ∃x ∈ {0,1}n , f i(x) �= f i(x j) where x j is the configuration defined by
∀k �= j, x j

k = xk and x j
j = ¬x j .

In this paper, without loss of generality, all digraphs considered are supposed to be connected and
to have non-null minimal in-degrees (∀i ∈ V , deg−

G (i) > 0). The reason why the second restriction can
be done safely in the context of disjunctive networks follows from the definition of the local transition
functions in (1). Indeed, in a disjunctive network, nodes with a constant state (which necessarily
equals 0) have no effective impact on the states of other nodes. They can thus be removed from the
digraph without any consequences on the states of the remaining nodes and this “pruning” of the
original digraph can be carried out polynomial time.

Now, in order to see networks as dynamical systems and define a global transition function F :
{0,1}n → {0,1}n , an update schedule needs to be specified.

1.2. Update schedules

In this paper, we are interested in periodic update schedules that update all nodes in a way that
there are no nodes that are updated much more often than others. We call these update schedules fair
update schedules. They constitute the important class of update schedules that have a finite period
which involves each node at least once.

Let us first define a general (periodic) update schedule as a function s : V → P(N<m) such that
∀i ∈ V , s(i) refers to the set of dates at which node i is updated during one update sequence and
∀t < m, s−1(t) refers to the set of nodes updated at date t of the update sequence (i.e., in t-th po-
sition). In other words, nodes are updated according to the sequence s−1(0), s−1(1), . . . , s−1(m − 1)

(see Example 1 below). Let us note that some nodes may never be updated and some nodes may
be updated more than once during each update sequence. Let us also note that when |s−1(t)| > 1,
there are |s−1(t)| nodes that are updated synchronously at step t of the sequence. Without loss of
generality, we suppose that update schedules impose no “waiting period” within a complete sequence
of updates: ∀t < m, s−1(t) �= ∅.

A network G updated according to an update schedule s is denoted by G(s) and will simply be
called the network G(s) in the sequel.
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Example 1. Let G be a network of size 5 and let s : V → P(N<3) be the update schedule such that
s(0) = ∅, s(1) = s(4) = {0,2}, s(2) = {0}, and s(3) = {1}. Then, the network G(s) has the following
dynamics starting from x(0) ∈ {0,1}n:

x(0) → x(1) = (
x0(0), f1

(
x(0)

)
, f2

(
x(0)

)
, x3(0), f4

(
x(0)

))
→ x(2) = (

x0(0), f1
(
x(0)

)
, f2

(
x(0)

)
, f3

(
x(1)

)
, f4

(
x(0)

))
→ x(3) = (

x0(0), f1
(
x(2)

)
, f2

(
x(0)

)
, f3

(
x(1)

)
, f4

(
x(2)

))
→ x(4) = (

x0(0), f1
(
x(3)

)
, f2

(
x(3)

)
, f3

(
x(1)

)
, f4

(
x(3)

))
. . .

where x(t) denotes the configuration of the network at step t of the update sequence.

We say that an update schedule s is k-fair when it doesn’t update any node more than k times the
number of times it updates another node:

∀i, j ∈ V ,
∣∣s(i)

∣∣ � k × ∣∣s( j)
∣∣.

In this paper, we pay special attention to a well-known class of 1-fair update schedules, namely, block-
sequential update schedules (see Example 2). These update schedules are such that m � n = |V | and
every node is updated exactly once during an update sequence: ∀i ∈ V , |s(i)| = 1. For such update
schedules, we abuse notations and define s as a function of V → N<m so that s(i) refers to the
only date of update of node i within the update sequence (and no longer to a set of dates). When
m = 1 and s−1(0) = V , s is called the parallel update schedule and is denoted by π . It updates all
nodes at once. On the contrary, a sequential update schedule is a block-sequential update schedule
that updates nodes one at a time: ∀t < m = n, |s−1(t)| = 1. The number of different block-sequential
update schedules of a set of n elements is known to be exponential in n [5].

Example 2. Let V = N<6. The function r : V → N<3 such that r(0) = r(1) = r(5) = 2, r(3) = r(4) = 1
and r(2) = 0 is a block sequential update schedule. The function s : V → N<6 such that s(0) = 3,
s(1) = 2, s(2) = 4, s(3) = 1, s(4) = 5 and s(5) = 0 is a sequential update schedule. A more practical
way of denoting r, s and the parallel update schedule π is the following:

r ≡ {2}{3,4}{0,1,5}, s ≡ {5}{3}{1}{0}{2}{4}, π ≡ {0,1,2,3,4,5}.

1.3. Transition functions

Let us now define a transition function local to a set W ⊆ V of nodes that are updated in parallel:

f W (x)i =
{

f i(x) if i ∈ W ,

xi otherwise.

Then, we can define the global transition function Fs : {0,1}n → {0,1}n of a network updated with a
periodic update schedule s : V →P(N<m):

∀x ∈ {0,1}n, Fs(x) = f s−1(m−1)(x) ◦ · · · ◦ f s−1(1)(x) ◦ f s−1(0)(x).

Fs is the function that gives the new configuration of the network after a whole sequence of updates
by s. For instance, for the parallel update schedule, Fπ (x) equals f V (x). When there is no ambiguity
as to what network G = (V , A) and what update schedule s are being considered, for any initial
configuration x ∈ {0,1}n , we write x = x(0) and x(t) = F t

s(x) (where F t
s is the t-th iterate of Fs).
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For a network G = (V , A) updated with a block-sequential update schedule s we also introduce
the local transition functions f s

i relative to s so that:

Fs(x) = (
f s

0(x), . . . , f s
n−1(x)

)
(2)

and, in particular, Fπ (x) = f V (x) = ( f0(x), . . . , fn−1(x)). These functions are defined as follows:

∀x ∈ {0,1}n, f s
i (x) = f i(x∗

0, . . . , x∗
n−1) where x∗

j =
{

x j if s(i) � s( j),
f s

j (x) if s(i) > s( j). (3)

This way, under a block-sequential update schedule s, if x = x(t) is the network configuration at
time t , then xi(t + 1) = Fs(x)i = f s

i (x) is the state that node i has between the time of its sole update
within the update sequence following time t and the time of its next update in the next update
sequence.

Let us note that the definitions above of (local) transition functions are given for arbitrary Boolean
automata networks. For the case of disjunctive networks in which all local transition functions equal
the or function, local transition functions relative to s defined in (3) can be written as follows:

∀x ∈ {0,1}n, f s
i (x) =

∨
j∈N−

G (i)
s( j)�s(i)

x j ∨
∨

j∈N−
G (i)

s( j)<s(i)

f j(x). (4)

As a consequence, if M is the adjacency matrix of G (i.e., the n ×n matrix such that ∀i, j ∈ V , Mij = 1
⇔ (i, j) ∈ A), then, under the parallel update schedule, ∀x(t) ∈ {0,1}n , ∀k ∈ N, x(t + k) = x(t) · Mk .

1.4. Dynamics of networks

Let G = (V , A) be a network updated with a fair update schedule s : V → P(N<m). Since the set
{0,1}n of configurations of G(s) is finite, all trajectories x(0), x(1), . . . , x(t), . . . of G(s) necessarily end
up looping: ∀x(0) ∈ {0,1}n , ∃t, p s.t. x(t + p) = x(t). Attractors are orbits of such periodic configurations
x(t). Attractors of size 1 involving a unique periodic configuration x (x = x(t), ∀t ∈ N) that satisfies
f i(x) = xi , ∀i ∈ V , are called fixed points. Since fixed point configurations can equivalently be defined
as the configurations x such that ∀W ⊆ V , f W (x) = x, in the case of a 1-fair update schedule s,
they are exactly the fixed points of the global transition function Fs . Other attractors are called limit
cycles.

Let us note that with 1-fair update schedules, the set of attractors of size 1 equals the set of fixed
points. This is not necessarily true with other update schedules. Generally, it may exist attractors of
size 1 that are limit cycles rather than fixed points. Indeed, update schedules that are not 1-fair may
update some nodes several times during a sequence of updates. As a consequence, the states of some
nodes may cycle within an update sequence while the network will globally appear to be in a stable
configuration if it is observed only after the end of each update sequence. Since one of our main
aims here is to distinguish between networks that cycle and networks that don’t, while focusing on
1-fair update schedules such as block-sequential update schedules, it will suffice to characterise the
dynamics of networks by observing the network configurations only once at the end of each update
sequence.

In other terms, in the special case of 1-fair update schedules, and more specifically, that of block-
sequential update schedules, we will consider network transitions of the form (x, Fs(x)) rather than
their decomposition into elementary transitions of the form (x, f s−1(t)(x)). With a 1-fair update sched-
ule s, we consider the transition graph I(G(s)) whose nodes are the configurations of G(s) and whose
arcs are the transitions (x(t), x(t + 1)) (i.e. I(G(s)) is the graph of the function Fs). This digraph de-
scribes the dynamics of G(s). In this context, an attractor that corresponds to an underlying cycle of
length p in I(G(s)), is said to have period p. Configurations in an attractor of period p are also said
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to have period p. For such configurations x(t), p is the minimal integer such that x(t + p) = x(t) is
satisfied. In particular, fixed points have period 1.

Generally, if s is a fair update schedule and if H is a subdigraph of G , we say that H cycles (resp. is
fixed) in an attractor of G(s) if its state changes in that attractor (resp. if it remains the same). If s is
block-sequential, the transition graph relative to H under s is denoted by I(H(s)) and defined as the
digraph whose nodes are the configurations xH ∈ {0,1}|V H | of H and whose arcs are the transitions
(xH (t), xH (t + 1)) where xH (t + 1) = Fs(x(t))H . It is important to note that when H = C is a non-
trivial strongly connected component of G , it can be made to behave exactly as if it were an isolated
digraph rather than the subdigraph of another. Indeed, it suffices to set to 0 the states of all nodes
in V \ V C that are on a path that ends in C . This way, by definition of the local transition functions
in a disjunctive network (see (4)), these nodes remain fixed in state 0 (all their in-neighbours are
and remain in state 0) and they cannot influence other nodes of the network, i.e. they cannot cause
another node to change states. In particular, they cannot influence nodes of C and nor can any other
node in V \ V C (since other nodes are not on paths that end in C ). Thus, a node of C only undergoes
influences by nodes of C , i.e. C is free to behave as if it were isolated. If s block-sequential, this means
that there is a subdigraph of I(C(s)) that is isomorphic to the transition graph that C would have if
it were an isolated strongly connected digraph.

Now, before we move on, we give a preliminary lemma that will be extensively used in the sequel.
This lemma concerns the impact of the state of a node i being fixed to a certain value a ∈ {0,1} (i.e.
∃t ∈N, ∀t′ � t , xi(t′) = a) on the state of other nodes in the network.

Lemma 1. Let G = (V , A) be a disjunctive network updated with the update schedule s.

(i) If s is a fair update schedule and if a node i ∈ V becomes fixed in state 1, then all nodes on a path that
starts in i also become fixed in state 1.

(ii) If s is a block-sequential update schedule, and if, in an attractor A of G, a node i ∈ V is fixed in state 0,
then all nodes on a path that ends in i are also fixed in state 0 in A.

A consequence is that a strongly connected network updated with a fair update schedule cannot cycle if it
contains a loop-node in state 1 and a strongly connected network updated with a block-sequential update
schedule cannot cycle if it contains a loop-node.

Proof. Point (i) is proven by induction the length �i j of a path Pij from the node i (whose state is
fixed to 1) to a node j. The proof relies on the two following facts. By (4), in a disjunctive network,
any node takes state 1 if it is updated while one of its in-neighbours is currently in state 1. A fair
update schedule updates all nodes eventually. Thus, nodes on Pij gradually become fixed in state 1.

To prove point (ii), suppose that ∀x(t) ∈ A = {x(t) | t ∈ N/pN}, xi(t) = 0. Suppose in addition that
there exists a node j ∈ N−

G (i) satisfying ∃t ∈ N/pN, x j(t) = 1. By (3) or (4), either s(i) � s( j) and
then xi(t + 1) = f s

i (x(t)) = 1, or s(i) > s( j) and then xi(t) = f s
i (x(t − 1)) = 1. Both cases contradict

∀t ∈ N/pN, xi(t) = 0 so it holds that ∀t ∈ N/pN, ∀ j ∈ N−
G (i), x j(t) = 0. Point (ii) follows by induction

on the length � ji of a path from j to i.
Let us prove the last part of Lemma 1. Let A be an attractor of the strongly connected digraph

G = (V , A) and let (i, i) ∈ A. By (4), as soon as i takes state 1, it remains in state 1. Point (i) then
implies that A corresponds to the fixed point 1|V | . And if s is block-sequential then, either the state
of i is fixed to 0 in A in which case, by point (ii), A corresponds to the fixed point 0|V | , either, it
takes state 1. �
2. Dynamics of block-sequential update schedules

In this section we describe the dynamics of a network induced by an arbitrary block-sequential
update schedule. This description will help us in our general network classification of Section 3.
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2.1. Digraph Gs associated to a network G(s)

Given a disjunctive network G and a block-sequential update schedule s, we define a new network
(see Example 3) Gs = (V , As) with the same set of nodes and with a set of arcs equal to:

As = {
( j, i)

∣∣ f s
i (x) depends on x j

}

so that I(G(s)) = I(Gs(π)).

Lemma 2. The set of arcs of the network Gs is characterised by:

( j, i) ∈ As ⇐⇒ in G, there exists a path {i0, i1 . . . i�}
of length �� 1 from j = i0 to i = i� s.t.

s(i0) � s(i1) and ∀1 � k < �, s(ik) < s(ik+1).

Proof. First, let us suppose that there exists such a path from j to i in G . Let x = x(t) be an arbitrary
configuration. By definition, configuration x(t + 1) = Fs(x) satisfies ∀i ∈ V , xi(t + 1) = f s

i (x). By (3),
it also satisfies ∀1 � k < �, xik+1 (t + 1) depends on xik (t + 1). With an induction on k this leads to
∀1 � k < �, xik+1 (t + 1) depends on xi1 (t + 1). By (3) again, xi1 (t + 1), in turn, depends on xi0 = x j .
As a consequence, ∀1 � k � �, xik+1 (t + 1), and in particular, xi(t + 1) = f s

i (x) depends on x j so
( j, i) ∈ As .

Now, let us suppose that ( j, i) ∈ As so that xi(t + 1) depends on x j(t). The converse of Lemma 2
is proven by induction on s(i). First suppose that s(i) = 0. It can only be that s(i) � s( j) and, by (2),
( j, i) ∈ A (so that f i(x) does indeed depend on x j ). Next, suppose that s(i) > 0, then either, again,
s(i) � s( j) and ( j, i) ∈ A, or there is a k ∈ N−

G (i) such that s(k) < s(i) (so that xi(t + 1) depends on
xk(t + 1)) and xk(t + 1) depends on x j(t). In the second case, by induction hypothesis there exists a
path with the desired properties from j to k and, using the arc (k, i), this path can be extended to a
path with the desired properties from j to i. �

Let us note that in particular, Gπ = G . And since, by the definition of Gs , for any block-sequential
update schedule s, the dynamics of Gs updated in parallel is identical to that of G(s) (I(G(s)) =
I(Gs(π))), in the sequel, we speak indifferently of the dynamics of G(s) and Gs(π). Thus, provided
a characterisation of the digraphs Gs with respect to G , we may bring our study of networks up-
dated with arbitrary block-sequential update schedules back to the study of networks updated in
parallel.

Let us mention that for a general Boolean network N defined by a digraph G = (V , A) and a set of
local transition functions { f i | i ∈ V }, it also holds that I(N(s)) = I(Ns(π)) where Ns is the network
defined by Gs and the set of local transition functions { f s

i | i ∈ V }.

Example 3. Let V = N<6 and let s and r be as in Example 2. Fig. 1 pictures the digraphs G = Gπ ,
Gs and Gr associated to a disjunctive network G updated respectively with the update schedules π ,
s and r. As mentioned above, G(s) and Gs(π) have the same dynamics and similarly for r. This can
be checked in the table below that gives the dependencies between states of nodes according to the
update schedule.

Let us now give some precisions on the structure of the digraphs Gs with respect to that of the
digraphs G from which they issue.
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i ∈ V π ≡ {0,1,2,3,4,5} s ≡ {5}{3}{1}{0}{2}{4} r ≡ {2}{3,4}{0,1,5}
xi(t + 1)

0 x1(t) ∨ x3(t) x1(t + 1) ∨ x3(t + 1) = x0(t) ∨ x2(t) ∨ x4(t) x1(t) ∨ x3(t + 1) = x1(t) ∨ x4(t) ∨ x5(t)

1 x2(t) ∨ x5(t) x2(t) ∨ x5(t + 1) = x2(t) ∨ x0(t) x2(t + 1) ∨ x5(t) = x5(t)

2 x5(t) x5(t + 1) = x0(t) x5(t)

3 x2(t) ∨ x4(t) x2(t) ∨ x4(t) x2(t + 1) ∨ x4(t) = x5(t) ∨ x4(t)

4 x5(t) x5(t + 1) = x0(t) x5(t)

5 x0(t) x0(t) x0(t)

Fig. 1. Digraphs and node state dependencies associated to three different block-sequential update schedules (see Example 3).
For an arbitrary configuration x(t) ∈ {0,1}n of the network G(δ), δ ∈ {π, s, r}, we write x(t + 1) = Fδ(x(t)) and xi(t + 1) =
f δ

i (x(t)).

Lemma 3. Let G be a strongly connected digraph and s a block-sequential update schedule of its nodes. Then,
Gs is comprised of one unique non-trivial strongly connected component and possibly some outgoing acyclic
subdigraphs (see the following figure).

Proof. Because, deg−
G (i) > 0, ∀i ∈ V , it also holds that deg−

Gs (i) > 0,∀i ∈ V , i.e. with both update
schedules π and s, the state of any node depends on the state of at least one other node. Thus, there
exists a non-trivial strongly connected component in Gs .

Let us suppose that there exists two distinct non-trivial strongly connected components C1 and
C2 in Gs and let j ∈ V C1 and i ∈ V C2 be two nodes in each of them. Also, let j′ ∈ V C1 be another (or
the same) node of C1 such that ( j′, j) ∈ As (this node exists because C1 is non-trivial). Because G is
strongly connected, it contains a path P ji = { j = i0, i1, . . . , i� = i} from j to i. Let r < � be the smallest
integer such that s(ir) � s(ir+1), if it exists, and let r = �, otherwise. It can be shown that the sub-path
of P ji that starts in ir and ends in i is necessarily a series of zero (if ir = i), one or several pathes
of the form described in Lemma 2. By Lemma 2, each of these pathes are turned into single arcs in
Gs so that, in this digraph, there exists a path from ir to i. Using (3) (the definition of f s

i ) and that
∀0 < k � r, s(ik−1) < s(ik), it can also be shown that ∀x ∈ {0,1}n , ∀0 < k � r, f ik (x) and in particular
f s

ir
(x) depends on f s

j (x) which in turn depends on x j′ . Thus, in Gs , there exists a path from j′ to ir ,
and consequently, a path from j′ ∈ V C1 to i ∈ V C2 . For similar reasons, there also exists a path from
a node of C2 to one of C1 so that both components can not be distinct. From this contradiction we
derive that there only is one non-trivial strongly connected component C in Gs . All nodes i /∈ V C can
be reached from C but belong to no non-trivial strongly connected component. Thus, they necessarily
constitute acyclic subdigraphs outgoing C . �
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Lemma 4. Let G = (V , A) be a digraph and s a block-sequential update schedule of its nodes. Then, Gs is
strongly connected if and only if G is strongly connected and ∀i ∈ V , ∃ j ∈ N+

G (i), s(i)� s( j).

Proof. First, suppose that G is strongly connected and ∀i ∈ V , ∃ j ∈ N+
G (i), s(i) � s( j). By Lemma 3,

Gs contains a unique non-trivial strongly connected component C . By Lemma 2, ∀i ∈ V , ∃ j ∈ N+
G (i),

(i, j) ∈ As so ∀i ∈ V , deg+
Gs (i) > 0. As a result, C contains all nodes of V . Conversely, if G is not

strongly connected then, there exists i, j ∈ V with no path in G from i to j. By Lemma 2, pathes in
Gs are induced by pathes in G: there cannot be a path from i to j in Gs unless there is one in G . Thus,
Gs is not strongly connected. If G is strongly connected but there exists i ∈ V such that ∀ j ∈ N+

G (i),
s( j) > s(i) then, by Lemma 2 again, deg+

Gs (i) = 0 and Gs is not strongly connected. �
2.2. Structure and dynamics

As it has been mentioned above, to define a general Boolean network, one needs a set of local
functions as well as an underlying digraph. As a result, the dynamics of such networks cannot be
derived directly from the knowledge of their structure. Disjunctive networks, on the contrary, are
completely defined by their underlying digraphs. And as we have seen in the previous section with
the fact that I(G(s)) = I(Gs(π)), this remains true when the network is updated with an arbitrary
block-sequential update schedule s and if the underlying digraph considered is Gs . The following
lemma can be derived from results in [8] or from the formula in [12] giving the number of fixed
points of a conjunctive or disjunctive network. We however give here a simple proof. Let us recall
that by definition, fixed points of a network do not depend on its update schedule.

Lemma 5. A disjunctive network G = (V , A) (such that ∀i ∈ V , deg+(i) > 0) has a unique non-trivial strongly
connected component if and only if for any block-sequential update schedule s, 0|V | and 1|V | are the only fixed
points of G(s).

Proof. 0n and 1n are obviously fixed points of any disjunctive network (such that ∀i ∈ V , deg+(i) > 0).
Suppose first that G has one unique non-trivial strongly connected component C . If x is a fixed point
of G such that ∃i ∈ V \ V C , xi = 1, then (by (4)) ∃ j ∈ N−

G (i), x j = 1. In this case, there exists a path
from C to i that contains only nodes whose states equal 1 in x (this can be shown by induction on
the length of the path) and in particular, there exists a node of C whose state equals 1 in x. Now, if
∃i ∈ V C , xi = 1, then, by point (i) of Lemma 1, x equals x = 1|V | . Any fixed point of G which is not
equal to 0|V | is equal to 1|V | .

Conversely, suppose that G contains more than one non-trivial strongly connected component.
Then, G contains a non-trivial strongly connected component C with no in-coming arcs and there
exists a fixed point x in which the state of C is fixed to xC = 0|C | and the states of all other non-trivial
strongly connected components C ′ are fixed to xC ′ = 1|C ′ | (they can remain in that state because they
are non-trivial). �

Now, let us define η(G) as the greatest common divisor of the lengths of all cycles in a strongly
connected digraph or component G = (V , A). η(G) is called the index of imprimitivity of G in [3] and
the loop number of G in [12]. It is known [3] that the property η(G) = 1 is equivalent to the adjacency
matrix M of G being primitive, i.e., M is an irreducible square matrix for which there exists a positive
integer N such that ∀k � N , Mk is a strictly positive matrix. This means that if x(t) �= 0n then there
exists an integer k such that x(t + k) = x(t) · Mk = 1n . More generally, we have the following lemma:

Lemma 6. Let G be a disjunctive network updated with the block-sequential update schedule s and let C be a
non-trivial strongly connected component of Gs. Then, the period of C in any attractor A of G(s) divides η(C)

and there exists an attractor A in which C cycles with period η(C). In particular, η(C) = 1 if and only if the
state of C is fixed in all attractors of G(s).
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Proof. We prove Lemma 6 for a strongly connected digraph C = G updated in parallel. The general
case follows from I(G(s)) = I(Gs(π)) and from the remark made on page 651 concerning the dy-
namics of non-trivial strongly connected components.

First, let us consider two arbitrary nodes i and j that are connected by a path of length �i j from
i to j. Given that xi(t) = 1 is true for some time t ∈ N, we can show by induction on �i j that
x j(t + �i j) = 1 is true at some ulterior time t + �i j . In particular, xi(t + �ii) = xi(t) = 1 holds and
so does ∀k ∈ N, xi(t + k · �ii) = xi(t) = 1.

Now, suppose that a node i satisfies xi(t) = 0 and for some integer k � 1, xi(t +k · �ii) = 1. Then by
the previous remark it holds that ∀k′ � k, xi(t +k′ ·�ii) = 1. In particular, if x(t) belongs to an attractor
A of period p, with k′ = k · p � k, it holds that 0 = xi(t) = xi(t +k · p ·�ii) = 1. This contradiction proves
that if xi(t) = 0 in an attractor configuration x(t), then, there is no k � 1 such that xi(t + k · �ii) = 1.

Thus, generally, for a configuration x(t) belonging to an attractor A of period p, it holds that
∀i ∈ V , ∀k ∈ N, xi(t + k · �ii) = xi(t). Consequently, p divides the lengths �ii of all cycles in G . It also
divides their greatest common divisor η(G) and if η(G) = 1, all attractors have period p = 1.

Now, finally, let us suppose that η(G) > 1 so that (see [3]) the set of nodes of G may be partitioned
as follows: V = V 1 � V 1 � · · · � Vη(G) where ∀1 � k � η(G), Vk �= ∅, and, supposing that Vη(G)+1 = V 1,
all arcs of A are of the form ( j, i) ∈ Vk × Vk+1 for some 1 � k � η(G). Then, the configuration x ∈
{0,1}n defined by ∀i ∈ V 1, xi = 0 and ∀i /∈ V 1, xi = 1, for example, belongs to a limit cycle of period
η(G) of G . �

Lemma 6 extends to all block-sequential update schedules a result given in [8] and again in [12]
concerning the particular case of the parallel update schedule. A direct consequence of this lemma
is that a network G that may cycle under block-sequential update schedules is a network for which
there exists at least one block-sequential update schedule s and one non-trivial strongly connected
component C of Gs satisfying η(C) > 1.

Following Lemma 6, we know that any network G such that η(G) > 1 cycles with the parallel
update schedule. A natural question is “If G is such that η(G) = 1, can we determine whether G may
cycle for some block-sequential update schedule (i.e., whether η(Gs) > 1 for some s)?”. As mentioned
earlier, the number of block-sequential update schedules of n nodes is exponential. Thus, to answer
this question, we must keep relying on the structural properties of G . The two following propositions
answer this question for some particular classes of disjunctive networks.

Proposition 1. A symmetric digraph2 G cycles under no other block-sequential update schedule than the par-
allel: ∀s �= π , η(Gs) = 1. It cycles under the parallel update schedule if and only if it contains no cycle of odd
length. In this case η(G) = 2 and by Lemma 6, all limit cycles have period 2.

Proof. For any nodes i and j such that (i, j), ( j, i) ∈ A, if s(i) > s( j) then i is a loop-node in Gs so
that η(Gs) = 1 and G(s) does not cycle by Lemma 6. Thus, the only update schedule of G that can
possibly induce limit cycles is π . If there exists an odd length cycle in G , then, since there also are
cycles of length 2, η(G) = 1. Otherwise, η(G) = 2. �

To give the next example of a class of disjunctive networks illustrating Lemma 6, let us define
cycle-edges of a strongly connected digraph G as maximal paths {i0, . . . , ik} such that (i) all nodes
ir, r � k are distinct, except possibly i0 and ik , and (ii) all nodes ir , r � k, except possibly i0 and ik ,
have in- and out-degree 1. With this definition, loops are special instances of cycle-edges of length 1
and so are the arcs ( j, i) of a cycle that are such that i and j both have in- or out-degree greater
than 1.

Proposition 2. A digraph containing a non-trivial strongly connected component with no cycle-edges of
length 1 can cycle for a certain block-sequential update schedule.

2 ∀i, j ∈ V , (i, j) ∈ A ⇒ ( j, i) ∈ A.
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Fig. 2. Left: a digraph G as in Proposition 2 and such that η(G) = 1. Right: the digraph Gs satisfying η(G(s)) = 4, where
s ≡ {0,1,3,4,5,6,8,9}{2,7}. Arcs with different dotted or dashed lines belong to different cycle-edges. Arcs in full lines do not
belong to any cycle-edge.

Fig. 3. Left: a network G . The arcs ( j, i) in dashed lines are those that satisfy s(i) > s( j). All other arcs are those in a 3-cycle-
cover of G . Right: the digraph Gs where s is associated to the 3-cycle-cover of G as in proof of Proposition 3.

Proof. We prove Proposition 2 in the case where the digraph itself is strongly connected. The general
case follows the remark made on page 651 concerning the dynamics of non-trivial strongly connected
components. Let s be a block-sequential update schedule such that for any cycle-edge {i0, . . . , ik} of
odd length k � 3, s(i1) < s(i2) and ∀r � k, r �= 1, s(ir) � s(ir+1). Then, for any such cycle-edge of G ,
by Lemma 2, the following holds. The path {i2, . . . , ik} remains unchanged in Gs . The path {i0, i2}
is replaced by the arc (i0, i2) ∈ As . The arc (i1, i2) ∈ A \ As disappears. Thus, globally, the cycle-edge
{i0, i1, . . . , ik} of odd length k in G becomes a cycle-edge {i0, i2, . . . , ik} of even length k − 1 in Gs . All
cycle-edges and consequently all cycles of Gs have an even length. As a result, η(Gs) > 1 is even (see
Fig. 2). �

We are now going to prove Proposition 3 given below. This proposition characterises, in terms of
their structure, the strongly connected disjunctive networks that cycle for a certain block-sequential
update schedule. First, let us define k-cycle-covers as follows. Let W ⊆ A be a subset of arcs of a
strongly connected digraph G = (V , A) and let C be a cycle of this digraph. We say that C is covered
by a multiple of k ∈ N arcs of W or is k-covered by W if ∃q � 1 s.t. |AC ∩ W | = k · q (see Fig. 3). The
set W is said to be a k-cycle-cover of G if and only if:

(i) all cycles of G are k-covered by W , and
(ii) there is no undirected cycle {i0, i1, . . . , im = i0} containing at least one arc of A \ W and satisfying

the following: ∀r < m, either (ir, ir+1) ∈ A ∩ W or (ir+1, ir) ∈ A \ W .

The purpose of k-cycle-covers is that we can easily associate to them block-sequential update
schedules s such that k divides η(Gs).

Proposition 3. For any strongly connected digraph G and any integer k > 1, there exists a block-sequential
update schedule s such that k divides η(Gs) if and only if there exists a k-cycle-cover of G. As a consequence, an
arbitrary network G cycles for some block-sequential update schedule s if and only if it contains a non-trivial
strongly connected component C that has a k-cycle-cover for some k > 1.
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Proof. Suppose W is a k-cycle-cover of the strongly connected digraph G . Let s be a block sequential
update schedule such that:

∀(i, j) ∈ A, (i, j) ∈ W ⇔ s( j) � s(i).

The only reason for which s might not be well defined is if its definition induces that ∃i ∈ V , s(i) >

s(i). As proven in [1], this can only happen if there exists an undirected cycle {i = i0, i1, . . . , im = i}
containing at least one arc (ir+1, ir) (such that s(ir+1) < s(ir)) and satisfying the following ∀r < m:

• if (ir, ir+1) ∈ A then s(ir+1)� s(ir), i.e., (ir, ir+1) ∈ W , and
• if (ir+1, ir) ∈ A then s(ir+1) < s(ir), i.e., (ir+1, ir) /∈ W .

Point (ii) in the definition of a k-cycle-cover, however, excludes this. Therefore, s is well defined. Now,
by Lemma 2, a cycle of length � in Gs is necessarily induced by a cycle of G that contains � arcs (i, j)
such that s( j) � s(i), i.e. such that (i, j) ∈ W . And since that cycle must be k-covered by W , k must
divide �. Thus, k divides the lengths of all cycles in Gs and as a result it divides η(Gs).

Conversely, suppose that s is such that k > 1 divides η(Gs). For any cycle C of G , let W (C) =
{(i, j) ∈ AC | s( j) � s(i)}. We claim that each cycle C = {i0, i1, . . . , i� = i0} of G induces a cycle of Gs

of length |W (C)|. To show this, consider the maximal subpaths of C that have the form described in
Lemma 2. There necessarily exist some because s would not be well defined otherwise. The extremi-
ties of these maximal subpaths are all the nodes ir , r ∈N/�N of VC such that s(ir+1) � s(ir), i.e. such
that (ir, ir+1) ∈ W (C). Thus, there are as many of these subpaths as there are arcs in W (C). Further,
by Lemma 2, these maximal subpaths of C are turned into arcs in Gs that connect their extremi-
ties in a way that all these arcs form a cycle C′ of Gs . The length of this cycle equals the number
of arcs it contains (counting each arc as many times as it is used), that is, the number of maximal
subpaths of C , that is, |W (C)|. Now, since, by definition, η(Gs) divides all cycle sizes in Gs , it divides
|VC′ | = |W (C)|. As a result, W = ⋃

W (C) is a k-cycle-cover of G (condition (ii) in the definition of a
k-cycle-cover is satisfied because s is well defined).

The second part of Proposition 3 follows from the remark on page 651 on the dynamics of non-
trivial strongly connected components. �

To complete this section, we give one last result concerning the dynamics of disjunctive networks
under block-sequential update schedules. In the next section, we will focus on general fair update
schedules.

Lemma 7. For any disjunctive network G there exists a block-sequential update schedule s such that G(s) only
has fixed points.

Proof. For every non-trivial strongly connected component C of G , let iC ∈ C be an arbitrary node
in C and let PC = {iC = i0, . . . , ik = iC } be a closed path starting and ending in iC . We can define an
update schedule s as follows. For every non-trivial strongly connected component C associated to the
node iC and to the path PC , s satisfies s(ir+1) > s(ir), ∀0 < r < k and, for any other arc ( j, i) ∈ A
(∀C, ∀0 < r < k, ( j, i) �= (ir, ir+1)), s(i)� s( j). By Lemma 2, ∀C , iC is a loop-node in Gs . By Lemmas 1
and 6, G(s) does not cycle. �
3. Network classification

This section is devoted to the classification of disjunctive networks according to their dynamics
with respect to all fair update schedules. The basis of our classification is the four classes (F i, C y,
Mi and E v) defined by Elena in his PhD Thesis [7]. Since Elena, focused on a different set of Boolean



658 E. Goles, M. Noual / Advances in Applied Mathematics 48 (2012) 646–662
Table 1
In column 1 of this table figures the names of the classes that are defined on the corresponding
lines according to the properties given in line 1. In the second (resp. third) column figures a “Y”
if networks of the class have fixed points different from 0n and 1n (resp. limit cycles) for all fair
update schedules, and an “N” if they have for none. The two bottom right cells of the table mean
that for some fair update schedules networks in the classes Ev and Ev’ have limit cycles and for
some they have not.

∃FP �= 0n , 1n ∃LC

F i N N

F i′ Y N

C y N Y

Mi Y Y

E v N for some s Y, for others N

E v ′ Y for some s Y, for others N

networks,3 we have adapted the definition of these classes to fit our study of disjunctive networks.
More precisely, we have changed Elena’s definitions for the following reason. Any disjunctive network
of size n with minimal in-degree greater than 0 obviously has at least two fixed points: 0n and 1n .
As a result, there is no point in distinguishing networks on the criteria that they have fixed points or
not. Thus, we chose to replace this criteria by that of having fixed points different from 0n and 1n .
This way, we end up with the six classes defined in Table 1. We recall again that the set of fixed
points of a network is independent of the update schedule. Thus, every disjunctive network belongs
to one of the six classes of Table 1.

Theorem 1 below details the content of the six classes of Table 1. It mentions weakly-loop-free
components which are defined as non-trivial subdigraphs H of a digraph G that satisfy the following
three conditions:

(i) H is strongly connected,
(ii) V H contains no loop-node,

(iii) there is no node i ∈ V such that V H ⊆ N−
G (i) and there is a path from i to V H .

To contain no weakly-loop-free component, an arbitrary graph must either be cycle-free or all of
its non-trivial strongly connected components must contain loop-nodes (see Fig. 4 (right)). Indeed,
any non-trivial strongly connected component with no loop-nodes is a weakly-loop-free component
itself. Non-trivial strongly connected components containing loop-nodes can also, however, contain
weakly-loop-free components (see Fig. 4 (left)). Let us note that it can be determined in polynomial
time whether or not a strongly connected digraph, and as a consequence, any digraph contains a
weakly-loop-free component: construct the subdigraph G ′ of the strongly connected digraph G where
all loop-nodes and their incident arcs have been removed, find the non-trivial strongly connected
components of G ′ and look for one of them, C , which is such that there is no node i of G satisfying
V C ⊆ N−

G (i).

Theorem 1. Classes of disjunctive networks defined in Table 1 satisfy the following:

(i) Mi = C y = ∅.
(ii) F i ∪ E v is the set of disjunctive networks that contain a unique non-trivial strongly connected component.

F i′ ∪ E v ′ is the set of disjunctive networks that contain several.

3 He studied threshold Boolean automata networks whose local transition functions are of the following form: f i(x) =∑
j H(wij · x j − θi) where H is the Heaviside function (H(a) = 0 if a < 0 and H(a) = 1 otherwise), wij is the weight attributed

to the arc ( j, i) and θi is the activation threshold of i.
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Fig. 4. Left. A strongly connected digraph in which nodes 1 and 2 induce a weakly-loop-free component. This graph has
{(0,1,0), (0,0,1)} as limit cycle under the fair update schedule {1,2}{0,1,2}. Right. A strongly connected digraph G = (V , A)

with no weakly-loop-free component. In any configuration x �= 0|V | , ∃ j ∈ N−(i) = V , x j = 1 so as soon as i is updated it takes
state 1 and by Lemma 1, the network cannot cycle.

(iii) E v ∪ E v ′ is the set of disjunctive networks that contain at least one weakly-loop-free component. F i ∪ F i′
is the set of disjunctive networks that contain none.

The first point of Theorem 1 derives directly from Lemma 7. Point (ii) comes from Lemma 5
and the fact that fixed points are not changed by fair update schedules. Finally, point (iii) which
characterises the set of disjunctive networks that can cycle, follows from Proposition 4 below.

Proposition 4. A disjunctive network G can cycle under some fair update schedule if and only if it contains a
non-trivial strongly connected component in which there is a weakly-loop-free component. In addition, if G
contains a weakly-loop-free simple cycle, then it cycles under a 2-fair update schedule.

Proof. In this proof, given an update schedule s : V → P(N<m) and a configuration x(0) ∈ {0,1}n , we
change our notations and write, ∀t < m:

x(t) = f s−1(t−1)

(
x(t − 1)

) = f s−1(t−1) ◦ · · · ◦ f s−1(1) ◦ f s−1(0)

(
x(0)

)

(rather than x(t) = F t
s(x(0)) as before). Also, we write 0i to denote the configuration x ∈ {0,1}n such

that ∀ j �= i, x j = 0 and xi = 1. Following the remark made on page 651, we prove Proposition 4 in the
case where G is a non-trivial strongly connected digraph.

Let H be a maximal weakly-loop-free component of G and let C = {i0, . . . , i� = i0} be a cycle of G
that runs through each arc of AH at least once and through no other arc (V H = VC and AH = AC ).
Then, let s : V →P(N<p) be the update schedule defined as follows: ∀k ∈ N/�N, s(ik) = {k − 1,k} and
∀ j /∈ V H , s( j) = {k} where k ∈ N/�N is such that ik ∈ V H \ N−

G ( j) (k exists by the maximality of H
and condition (iii) in the definition of a weakly-loop-free component). It can be checked that s is a
well-defined fair update schedule. Let x(0) = 0i0 . We claim that ∀k ∈N/�N, x(k) = 0ik and as a result,
{x(k) = 0ik | k ∈ N/�N} is a limit cycle of G(s). Indeed, at each step k ∈ N/�N of the update sequence,
the set of nodes that are updated equals s−1(k) = {ik, ik+1} ∪ { j /∈ V H | s( j) = k}. If x(k) = 0ik , then
the following holds: ik (the unique node of G in state 1) has no in-neighbours in state 1, ik+1 has
one in-neighbour (node ik) in state 1, all other nodes in s−1(k) do not belong to V H and have no
in-neighbours in state 1. As a result, after the update of s−1(k), node ik has taken state 0, node ik+1
has taken state 1, nodes i ∈ s−1(k) \ V H remain in state 0 as do all other nodes that are not updated.
Thus, x(k + 1) = 0ik+1 . With an induction on k, this allows to conclude.

If C is a simple cycle, then, because VC = {ik | k < �}, each node ik ∈ VC is updated only twice:
once at step k of the update sequence (when it takes state 1) and once at step k + 1 (when it goes
back to state 0). All other nodes are updated once. Thus, in this case, s is 2-fair.

Finally, let us prove the converse. Suppose that G contains no weakly-loop-free component but
A = {x(t) | t < p} is a limit cycle of G(s), where s is fair. Let H be the subdigraph of G induced by
the nodes whose states are not fixed in A. Necessarily, H is not cycle-free (its minimal in-degree
must be at least one for all of its nodes to be able to cycle). Let C be a non-trivial strongly-connected
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Fig. 5. Classes of disjunctive networks. f.u.s. stands for fair update schedule and b.s.u.s. stands for block-sequential update schedule.
For a class C defined in Table 1, C∗ denotes the class with the same definition except that b.s.u.s.s are considered instead of
f.u.s.s. Networks that do not belong to E v∗ (resp. E v ′∗) belong to F i∗ (resp. F i′∗). Digraphs G1 to G6 are examples of networks
corresponding to each section of the diagram. In these examples, all non-trivial strongly connected components containing a
loop-node are unable to cycle whatever the update schedule (by Proposition 4). G3 ∈ F i∗ and G4 ∈ F i′∗ follow from Proposi-
tion 1, G3 ∈ E v and G4 ∈ E v ′ from Proposition 4. By Proposition 2, G5 satisfies η(G5) = 1 but can still cycle under a b.s.u.s. by
Proposition 2. The same is true for the top component of G6 so G5 ∈ E v∗ and G6 ∈ E v ′∗ .

component of H with no in-coming arcs in H . C is not weakly-loop-free. Either it contains a loop-
node i ∈ V C ⊆ V H which must take state 1 in some configuration of A (otherwise, its state is fixed
to 0 contradicting the definition of H). In this case, in A, i is fixed in state 1. Either there exists
i ∈ V such that V C ⊆ N−

G (i). In this case, node i ∈ V (such that V C ⊆ N−
G (i)) also is fixed in state 1.

Indeed, in each configuration x ∈ A, ∃ j ∈ V C , x j = 1 (otherwise all nodes in V C would be in state 0
and would remain so by definition of C ). Thus, in A, whenever i is updated, it takes state 1. In both
cases, the strongly connected graph G contains a node that is fixed in state 1 in A. Lemma 1 implies
that A must correspond to the fixed point 1|V | . �

Let us again restrict our attention to block-sequential update schedules. For any of the six classes C
defined in Table 1, let C∗ be the class of disjunctive networks that is defined similarly to C except that
only block-sequential update schedules are considered. Then, by the results of Section 2, replacing the
classes C by C∗ in Theorem 1, points (i) and (ii) remain true. As for point (iii), it can be replaced,
for instance, by the following claim that derives from Proposition 3: E v ∪ E v ′ is the set of disjunctive
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networks in which there is a non-trivial strongly connected component with a k-cycle-cover for some
k > 1. Fig. 5 gives two examples (G3 and G4) of digraphs that do not cycle for any block-sequential
update schedule but that do for some other fair update schedules. Thus, the network classes satisfy
the following strict inclusions:

E v∗ � E v, E v ′∗ � E v ′, F i � F i∗ and F i′ � F i′∗.

Fig. 5 sums up the results concerning all classes introduced in Table 1 for fair and block-sequential
update schedules.

4. Conclusion

Despite the apparent simplicity of disjunctive networks and although their underlying structure
are very tightly related to their dynamical behaviour, allowing a certain liberty in the updating mode
yields a new level of difficulty in the analysis of their dynamics. In this paper, we have classified
networks into four classes in both the cases of fair and block-sequential update schedules. We have
showed that all networks can loose their limit cycles with a certain update schedule. We have also
characterised those networks that may cycle for either a fair update schedule or a block-sequential
update schedule. In the more general case of fair update schedules, we can determine in polynomial
time whether a disjunctive network whose structure is known is able to cycle or not. When we
restrict our attention to just block-sequential update schedules, Proposition 3 gives a characterisation
of the networks that cycle under these updatings. It does so by means of the network structure only,
allowing us to bring our study of dynamics under different updating modes back to a planer study
of a digraph property (that of having a k-cycle-cover for some k > 1) that is not without similarities
with the Feedback-Arc-Set problem. One question remains unanswered, however: can we determine
in polynomial time if a disjunctive network is able to cycle for a certain block-sequential update
schedule? A related problem is whether or not having a k-cycle-cover, induces having a 2-cycle-cover,
i.e., can every cycling network cycle in a limit cycle of period 2 (η(Gs) = 2)? Further, in [16], Reidys
considers only update sequences such that each node is updated at least once and only one node
is updated at once. Under these conditions, they show that the property of keeping the same set
of periodic configurations is independent of whether or not we allow nodes to be updated several
times in a sequence. It would be interesting to determine if Reidys’s result remains true under the
conditions we chose to study where parallel updatings are allowed, and more, generally, now that
we are able to discriminate between a network that cycles and one that doesn’t, to describe more
precisely the limit dynamical behaviour of a disjunctive network and how its periodic configurations
are distributed in its attractors.
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