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In this paper two things are done. First, it is pointed out the existence of exact asymptotically flat,

spherically symmetric black holeswhen a self-interacting,minimally coupled scalar field is the source of the

Einstein equations in four dimensions. The scalar field potential is recently found to be compatible with

the hairy generalization of the Plebanski-Demianski solution of general relativity. This paper describes the

spherically symmetric solutions that smoothly connect the Schwarzschild black hole with its hairy counter-

part. The geometry and scalar field are everywhere regular except at the usual Schwarzschild-like singularity

inside the black hole. The scalar field energy momentum tensor satisfies the null-energy condition in the

static region of spacetime. The first lawholdswhen the parameters of the scalar field potential are fixed under

thermodynamical variation. Second, it is shown that an extra, dimensionless parameter, present in the hairy

solution, allows to modify the gravitational field of a spherically symmetric black hole in a remarkable way.

When the dimensionless parameter is increased, the scalar field generates a flat gravitational potential that,

however, asymptotically matches the Schwarzschild gravitational field. Finally, it is shown that a positive

cosmological constant can render the scalar field potential convex if the parameters arewithin a specific rank.
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I. INTRODUCTION

It is already more than forty years since Wheeler’s
original conjecture that black holes have no hair.
Although there was an intensive analysis on this claim
(for a review and references see Ref. [1]), the situation,
for the minimally coupled scalar field, was clarified in the
1990s. When the spacetime is asymptotically flat there are
two theorems that strongly constrain the existence of black
holes when the energy momentum satisfies the dominant-
energy [2] and the weak-energy conditions [3]. When just
the null-energy condition is required there is numerical
evidence on the existence of asymptotically flat four-
dimensional black holes [4]. There is also a very general
no-hair theorem in Brans-Dicke theories which satisfy the
weak energy condition in the Einstein frame [5].

It is particularly timely to consider the astrophysical rele-
vance of this problem. Actually, it has been pointed out that
the angular and quadrupolar momentum, J and Q, respec-
tively, of the black hole located at the center of our galaxy,
SgrA*, can be determined by the orbital precession of stars
very near to it, therefore allowing to check the relation

Q ¼ � J2

Mc that follows from the Kerr solution [6,7]. Due to

the uniqueness and no-hair theorems of asymptotically flat,
four-dimensional, general relativity this would test the
experimental validity of the hypothesis that they involve.

In an attempt to construct a hairy rotating black hole,
an exact family of stationary and axisymmetric Petrov
type D spacetimes was found when either a (non)mini-
mally coupled scalar field or a generic nonlinear sigma
model is the source of the Einstein equations [8]. The
work [8] considered a cohomogeneity two Weyl rescaling

of the Carter-Debever ansatz, which when replaced in the
vacuum Einstein equations contains all the Ricci flat—
Petrov type D—spacetimes [9]. Within this ansatz it was
found, on-shell, the most general scalar field potential
compatible with the Einstein equations for an arbitrary
nonlinear sigma model. While the form of the spacetime
metric is independent of the scalar manifold metric, the
form of the off-shell potential is relative to the sigma
model, and for the single scalar field is presented here
for the first time. This paper provides a discussion on
some physical implications that follow from the existence
of these hairy black holes.
The simplest case of a single, minimally coupled, scalar

field is very interesting. Since the Lagrangian has no
continuous symmetry, is not possible to associate it with
a conserved current, and therefore is a natural candidate to
be a dark matter component. The only source for the scalar
field can be its self-interaction. The analysis of Ref. [8]
allows to find, in this case, a generic potential compatible
with the Einstein equations:

Vð�Þ ¼ �

�2�

�
�� 1

�þ 2
sinhðð1þ �Þ�l�Þ

þ �þ 1

�� 2
sinhðð1� �Þ�l�Þ þ 4

�2 � 1

�2 � 4
sinhð�l�Þ

�

þ�ð�2 � 4Þ
6��2

�
�� 1

�þ 2
e�ð�þ1Þ�l� þ �þ 1

�� 2
eð��1Þ�l�

þ 4
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�2 � 4
e��l�

�
: (1)

This is the most general potential allowing for uncharged,
stationary and axisymmetric, Petrov type D solutions of the
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Plebanski-Demianski form. Here � ¼ 8�G, whereG is the

Newton constant, l� ¼ ð 2�
�2�1

Þ12, � is the cosmological

constant, and �, � are parameters of the potential. This
potential still makes sense when � ¼ 0 and, as is shown
in this paper, the spherically symmetric solutions of the
Einstein equation are continuous deformations of the
Schwarzschild black hole. Therefore, an interesting result
of this paper is to single out the first exact, uncharged,
asymptotically flat, black hole with everywhere regular
geometry and a single scalar field except at the usual
Schwarzschild singularity.

When� ¼ 0, the existence of these modifications to the
physically relevant Schwarzschild spacetime are pertinent
to the motion of test particles following geodesics in this
geometry. It is important to stress that no difference is
expected to arise in the gravitational field outside of a
star since, in these cases, a discontinuity appears in the
derivative of the gravitational field at the surface of the star,
and the lack of a conserved current for the scalar field make
this discontinuity incompatible with its existence in the
first place. The modified gravitational field introduced and
discussed in this paper is relevant as a model for black
holes. In this case, the dimensionless parameter �, plays
a very important role in setting the strength of the gravi-
tational field. Actually, for large enough values of the
parameter �, the strength of the gravitational field of a
hairy black hole can be made essentially flat all the way
from its surface up to regions as far from the location of
the event horizon as the model would require. Moreover,
the fact that the parameter � does not enter in the Komar
mass allows to introduce an extra parameter in the gravi-
tational field of a black hole, providing a new astrophys-
ical tool to fit the measured gravitational field of any
black hole configuration to this exact, analytical model,
derived from general relativity. The existence of scalar
fields has been already considered to be relevant to stellar
kinematics [10], and it has been noted that these models
will be experimentally tested in the future gravitational
wave measurements [11].

To close this introduction, we would like to acknowl-
edge that the fact that it is possible to relax the boundary
conditions for gravitating scalar fields in anti-de Sitter
spacetime [12] is what fueled the expectation that exact
solutions of this system should exist [13]. However, it turns
out that the black holes of Ref. [8] still make sense when
the cosmological constant vanishes.

The outline of the paper is as follows: in the Sec. II the
solutions and the potential are described, special limits are
described, and the Eddington-Finkelstein coordinates are
introduced. Section III describes the existence of two kinds
of solutions in this hairy black hole family and the location
of the horizon. Section IV is devoted to the computation of
the Komar mass and how it satisfies the first law of black
hole thermodynamics. Section V describes the behavior of
the gravitational potential that a geodesic test particle feels

in this background, the dimensionless parameter � sets the
strength of it. Finally, some remarks are made in Sec. VI.
The notation follows Ref. [14]. The conventions of

curvature tensors are such that a sphere in an orthonormal
frame has positive Riemann tensor and scalar curvature.
The metric signature is taken to be ð�;þ;þ;þÞ. Greek
letters are in the coordinate tangent space. Since we set
8�G ¼ � and c ¼ 1 ¼ ℏ, the gravitational constant has
units of length squared ½�� ¼ L2.

II. THE EXACT HAIRY BLACK HOLES

As discussed in the introduction, this paper studies the
first exact, asymptotically flat, solutions of the classical
model

Sðg;�Þ¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

R

2�
�1

2
g��@��@���Vð�Þ

�
; (2)

with field equations
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(5)

The following configurations are exact solutions of this
system [8]:

ds2 ¼ �ðrÞ
�
�FðrÞdt2 þ dr2

FðrÞ þ d�2

�
;

�2���1r��1

ðr� � ��Þ2 ;

(6)

FðrÞ ¼ r2�����ðr� � ��Þ2
�2

þ
�

1

ð�2 � 4Þ �
�
1þ ��r��

�� 2
� ���r�
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�
r2

�2�2

�
�;

� ¼ l�1
� lnðr��1Þ; (7)

where l� ¼ ð 2�
�2�1

Þ12 and d�2 is the line element of a unit

two-sphere. � is the only integration constant of the black
hole. The solution and theory are invariant under the
transformation � ! ��. The energy momentum of the
scalar field, in a comoving tetrad, has the form Tab ¼
diagð	; p1; p2; p2Þ and, in the static regions of spacetime,
defined by FðrÞ> 0, satisfies the null-energy condition.
It is easy to see from the form of the metric, and without

any reference to the details of the solution itself, that it is
possible to introduce Eddington-Finkelstein coordinates
u� ¼ t� R

dr
FðrÞ that allows to cover either the black hole

(u�) or the white hole (uþ). The asymptotically flat solu-
tion has a single horizon from which it follows that the
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Penrose diagram is the same as for the Schwarzschild black
hole.

In the hairless limit, � ¼ 1, the change of coordinates
r ¼ �� 1

y brings the hairy solution (6) and (7) to the

familiar Schwarzschild black hole

ds2 ¼ �
�
1� 2M

y

�
dt2 þ dy2

1� 2M
y

þ y2d�; (8)

where M ¼ 3�2þ�
6�3 .

From the form of the metric functions, it follows from
these expressions that the leading behavior of the metric is
the same than the Schwarzschild solution with the radial
coordinate given by 	 ¼ �� 1

r . As is discussed in

Sec. III, the solution (6) and (7) are actually two different
solutions, depending whether 0> r > � or �> r >1,
where r ¼ 0 or r ¼ 1 are the locations of the singularities,
where the rank of the coordinate r is defined in a
Eddington–Finkelstein-like patch such that the horizon is
smoothly covered.

The cases with � ¼ 2 and � ¼ 1 are special, however,
these values can be treated by a simple limiting procedure.
The solution with � ¼ 2 plus the corresponding limit of
the part which is proportional to the cosmological constant
of (1) was considered in the context of the existence of
topological AdS black holes in Ref. [15]. Along the same
lines, the limit when � ¼ 1 recovers the de Sitter black
hairy black holes compatible with inflation was considered
in Ref. [16].

III. THE TWO BRANCHES AND THE LOCATION
OF THE HORIZON

One can notice that the potential (5) has a different
behavior at � ¼ �1. From this observation it follows
that there are two solutions, depending on the branch that
one is considering. For further analysis is better to parame-
terize the solution with the dimensionless coordinate
x ¼ r

� , such that now the asymptotic region is at x ¼ 1.

The convention of this paper is such that the solution with
x > 1 is defined as the positive branch while the negative
branch is the one defined for x < 1.

The form of the lapse function makes very hard the task
of finding the exact location of the horizon. However, there
is a simple argument that gives a necessary condition for its
existence, which is the change of sign of the lapse function
�ðxÞFðxÞ; since�ðxÞ is positive definite is enough to focus
on FðxÞ. It can be noticed that�ðx ¼ 1ÞFðx ¼ 1Þ ¼ 1, and
it should be remembered that x ¼ 1 is the location of
infinity. Now, it follows that, when � < 2, FðxÞ is regular
at the origin and takes the value

F�<2ðx ¼ 0Þ ¼ �

�2 � 4
: (9)

When � > 2, the expansion of F�ðxÞ around x ¼ 0
diverges as

F�>2ðx ¼ 0Þ ¼ ð�2ð�� 2Þ � �Þx2��

�2ð�� 2Þ : (10)

Indeed, the region x 2 ð0; 1Þ corresponds to the negative
branch. The positive branch is in the region x 2 ð1;1Þ and
FðxÞ has the following asymptotic expansion:

F�ðx ¼ 1Þ ¼ ð�2ð�þ 2Þ þ �Þx2þ�

�2ð�þ 2Þ : (11)

When � ¼ 2, then there is a logaritmic divergence at x ¼ 0

F2ðx¼0Þ¼�lnðxÞ; F2ðx¼1Þ¼
�
�2

4
þ �

16

�
x4: (12)

When � ¼ 1, then

F1ð	¼0Þ¼�2��

	
; F1ð	¼0Þ¼ ð�2þ�Þ	: (13)

The conditions (9)–(11) are enough to analyze if the
lapse function vanishes a single time in a given interval. In
the case that there is more than one horizon more informa-
tion is necessary. A necessary condition for the existence
of more than one horizon is the vanishing of the derivative
of F�ðxÞ in the interval of interest. This condition can be
easily solved and the existence of black holes can be
classified as follows:
(i) When � � 2, the negative branch has black holes if

�> 0 and the positive branch if �<��2ð�þ 2Þ.
(ii) When 1> �> 2, the negative branch has black

holes if �2ð�� 2Þ<� and the positive branch if
�<��2ð�þ 2Þ.

(iii) When � ¼ 1, the negative branch has black holes
if �2 <� and the positive branch if �<��2.

Two main conclusions can be extracted from this
analysis:
(1) There are black holes for an open set in the parame-

ter space.
(2) If a black hole solution is realized in one of the

branches, then, automatically, the other branch con-
tains a naked singularity.

IV. THE MASS AND THE FIRST LAW

The computation of the Komar mass is straightforward.
The result is given by

M� ¼ 3�2 þ �

6�3G
: (14)

The subscript (� ) indicates that this is the mass for
the region x < 1. The change in the orientation of the
outward normal implies that the positive branch has mass
Mþ ¼ �M�.
The entropy is one quarter of the area

S ¼ A

4G
¼ ��ðrþÞ

G
¼ �

G

�2x��1þ
�2ðx�þ � 1Þ2 ; (15)
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where xþ ¼ rþ
� is the solution to FðxþÞ ¼ 0. The temperature is defined to make the Euclidean continuation smooth

T� ¼ � �

4�

xþð1� x�þÞðð�� 2Þð1þ x�þ2þ Þ þ ð�þ 2Þðx�þ � x2þÞÞ
ðx�þ2þ ð�2 � 4Þ � �2x�þ þ ð�þ 2Þx2þ þ ð2� �Þx2�þ2þ Þ ; (16)

where the subscript � indicates the temperatures for the
black holes defined by the positive and negative branch,
respectively. With these results at hand it is straightforward
to check that


MK ¼ T
S; (17)

where, the variation let the parameters of the Lagrangian,�
and �, fixed. All these quantities have smooth limits when
� ¼ 2.

V. THE GRAVITATIONAL FIELD

A test particle moving in this gravitational field satisfies
the geodesic equation ð�ðrÞ _rÞ2 þ FðrÞL2 þ�ðrÞFðrÞ ¼
E2, where L ¼ �ðrÞ _� and E ¼ �ðrÞFðrÞ _t are conserved
quantities and the dot stands for the derivative respect to
the geodesic affine parameter. If the coordinate _	 ¼ �ðrÞ _r
is introduced it is clear that the �ðrÞFðrÞ�1

2 term is the actual

gravitational potential that a test particle feels on this
background.

Therefore, to understand the departure of the geodesic
motion from the expected from the Schwarzschild black
hole (� ¼ 1), it is enough to compare the minus of the
lapse function, �gtt ¼ �ðxÞFðxÞ, for different values
of �. It is important to remark that all the corrections of

the geodesic motion in the Schwarzschild geometry to
the Newtonian behavior are proportional to the angular
momentum of the particle. The lapse function in the
� ¼ 1 case is just the Keplerian potential.

A. Different gravitational fields for the same
black hole area

To model the same black hole in the different theories,
defined by the different values of � and �, it is necessary to
fix its area. Thus, let us fix it as follows:

�ðxþ; �; �Þ ¼ 	2þ ) � ¼ j�jx��1
2þ

	þjx�þ � 1j ; (18)

where 	þ defines the area of the horizon to be 4�	2þ and
xþ is the location of the horizon defined by FðxþÞ ¼ 0.
This definition of � allows to write � as

�ðx; xþ; 	; �Þ ¼ 	2þ
x��1ðx�þ � 1Þ2
ðx� � 1Þ2x��1þ

: (19)

The definition of the location of the horizon can be used
to find the value of the parameter � in terms of xþ and �
and �. Finally, � and � can be replaced in the negative of
the lapse function to obtain FðxÞ�ðxÞ as a function of x,

FIG. 1. The positive branch.�ðxÞFðxÞ for a fixed horizon area.
The horizontal axis is log10ð

ffiffiffiffiffiffiffiffiffiffiffi
�ðxÞp

=	þÞ. This function is the
analogue of the logarithm of the radial coordinate in the
Schwarzschild geometry, normalized to be zero at the horizon.

FIG. 2. The negative branch. �ðxÞFðxÞ for a fixed horizon.

The horizontal axis is log10ð
ffiffiffiffiffiffiffiffiffiffiffi
�ðxÞp

=	þÞ. This function is the
analogue of the logarithm of the radial coordinate in the
Schwarzschild geometry, normalized to be zero at the horizon.

BRIEF REPORTS PHYSICAL REVIEW D 86, 107501 (2012)

107501-4



xþ, and �. These graphs are independent of 	þ. They
depend on xþ through the relation of the Komar mass
and 	þ and the relation of � and 	�2þ .

The fact that the horizontal axis is on a logarithmic scale
shows how flat the gravitational field can be made in the
presence of the scalar field (Figs. 1 and 2). This effect is a
purely general relativistic effect. It is very interesting to note
that the second derivative of the scalar field potential is zero
at� ¼ 0, and therefore the scalar field ismassless at infinity.
However this massless scalar, due to the nonlinear structure
of the Einstein equations, has a strong effect in the gravita-
tional field; it smoothly enhances the gravitational field from
the Schwarzschild solution to large deviations from it.

VI. FINAL REMARKS

Before this paper there was only one, exact, uncharged,
spherically symmetric black hole in four-dimensional
general relativity; now there is an infinite family of
them. Indeed, we make reference to configurations that
are everywhere regular except at the usual Schwarzschild
singularity.

As follows from the analysis of the lapse function,
the scalar field allows to have much larger than

Schwarzschild amounts of mass in a given region of space-
time. If this scalar field would actually exist, relatively
small black holes can be much more massive than one
would expect based on the Schwarzschild solution. These
smaller but massive black holes strongly modify the uni-
versal law of gravity not only in its near surroundings but
also in arbitrarily far regions from their location. It is
tempting to conjecture that these geometries can be useful
to describe the geodesic motion of actual test particles in an
astrophysical situation, like the well-known flat galactic
rotation curves. However, this can be considered as a
serious possibility only after a study of the stability of
these solutions is made. This, indeed, will be addressed
in a future publication.
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