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a b s t r a c t

An update digraph corresponds to a labeled digraph that indicates a relative order of its
nodes introduced to define equivalence classes of deterministic update schedules yielding
the same dynamical behavior of a Boolean network. In Aracena et al. [1], the authors exhib-
ited relationships between update digraphs and the feedback arc sets of a given digraph G.
In this paper, we delve into the study of these relations. Specifically, we show differences
and similarities between both sets through increasing and decreasingmonotony properties
in terms of their structural characteristics. Besides, we prove that these sets are equivalent
if and only if all the digraph circuits are cycles. On the other hand, we characterize themin-
imal feedback arc sets of a given digraph in terms of their associated update digraphs. In
particular, for complete digraphs, this characterization shows a close relation with acyclic
tournaments. For the latter, we show that the size of the associated equivalence classes is
a power of two. Finally, we determine exactly the number of update digraphs associated to
digraphs containing a tournament.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Boolean networks (BN) are the simplest models for genetic regulatory networks, as well as for other simple distributed
dynamical systems. Despite their simplicity, they provide a realisticmodel inwhich different phenomena can be reproduced
and studied, and indeed, many regulatory models published in the biological literature fit within this framework [5,8,7].

A BN is defined by its connection digraph, its local activation functions, and the update schedule used (see [2] for
more details). In [6] equivalence classes of deterministic update schedules in BNs were defined according to the associated
connection digraph, named update digraph, with labels on its arcs, which are of two types: an arc (a, b) has a negative label
if the state of a is updated strictly before b, and a positive label otherwise.

In [6,2], the authors showed that the elements of such equivalence classes yield exactly the same dynamical behavior of
the network. This result was the starting point for the algorithmical and combinatorial study of the update digraphs done
in [1], where among others, a close relationship between update digraphs and the feedback arc sets of a given digraph was
exhibited.

For a given digraph, a feedback arc set is a set of arcs which if removed leaves the resulting digraph free of cycles. The
problem of finding a feedback arc set withminimum size has been a subject of extensive research (see [3] for a good survey).
One of these works showed that such a minimum arc set is determined by a sequential ordering of the nodes which mini-
mizes the number of positive arcs [9].
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In this paper, we delve into the study of the relationships between update digraphs and feedback arc sets showed in [1]
as well as their relations with some particular digraphs such as complete digraphs, acyclic digraphs and tournaments in
order to determine exactly the number and size of the associated equivalence classes.

2. Preliminaries

We begin this section giving some basic definitions and introducing the necessary notations. Besides, we recall some
known results that allow us to develop the following sections.

A digraph is an ordered pair of sets G = (V , A), where V = {1, . . . , n} is a set of elements called vertices (or nodes) and
A is a set of ordered pairs (called arcs) of vertices of V . The vertex set of G is referred to as V (G), its arc set as A(G). If more
than one arc that connects a node i to a node j are admissible, then we will say that G is amultidigraph. A subdigraph of G
is a digraph G′

= (V ′, A′) where V ′
⊆ V and A′

⊆ (V ′
× V ′) ∩ A. We write G′

⊆ G. If A′
= (V ′

× V ′) ∩ A, we say that G′ is
induced by V ′ and call G′ an induced subdigraph of G which is denoted by G′

= G[V ′
]. If V ′ ( V ∨ A′ ( A, then we write

G′ ( G. We will often write G−U whose meaning depends on the nature of U . Thus, if U ⊆ V , then G−U is the subdigraph
of G induced by V − U , i.e. G − U = G[V − U]. If U ⊆ A, then G − U = (V , A − U).

G is a complete digraph if A = {(u, v) : u, v ∈ V ∧ u ≠ v}. G is a tournament if ∀x, y ∈ V , x ≠ y, (x, y) ∈ A Y (y, x) ∈ A.
A walk from a vertex v1 to a vertex vm in a digraph G is a sequence of vertices v1, v2, . . . , vm of V (G) such that

∀k = 1, . . . ,m − 1, (vk, vk+1) ∈ A(G) or (vk+1, vk) ∈ A(G). The vertices v1 and vm are respectively the initial and terminal
vertex of the walk. A walk is elementary if each vertex in the walk appears only once with the possible exception that the
first and last vertexmay coincide. Awalk is closed if its initial and terminal vertices coincide. A circuit is a closed elementary
walk. A walk v1, v2 . . . , vm is a path if (vk, vk+1) ∈ A(G) for all k = 1, . . . ,m−1. A cycle is a directed circuit, that is a closed
elementary path. G is an acyclic digraph if G has no cycle.

An arc set U ⊆ A is a feedback arc set of G if G−U is an acyclic digraph. U is said to be aminimal feedback arc set of G if
U is a feedback arc set of G and there is no other feedback arc set W ⊆ A of G such that W ( U . U is said to be a minimum
feedback arc set of G if U is a feedback arc set of G and there is no other feedback arc set W ⊆ A of G such that |W | < |U|.
The sets of feedback arc sets, minimal feedback arc sets and non feedback arc sets of G are denoted by FAS(G),MFAS(G) and
NFAS(G) respectively.

A digraph G is said to be connected if there is a walk between every pair of its vertices, and strongly connected if there
is a path between every pair of its vertices. G′

⊆ G is a strongly connected component of G if G′ is strongly connected and it
is maximal for this property, i.e., there is no other strongly connected subdigraph G′′ of G such that G′ ( G′′. If G′ is a strongly
connected component of G, composed by only one vertex, then G′ is called a trivial component.

An undirected graph (or a graph) is an ordered pair G = (V , E) where V = {1, . . . , n} is a non-empty finite set of
elements called vertices (or nodes) and E is a finite set of unordered pairs of distinct vertices of V called edges. The vertex
set of G is referred to as V (G), its arc set as E(G). An orientation of G is a digraph G′

= (V ′, A) where V ′
= V , |A| = |E| and

∀{x, y} ∈ E, either (x, y) ∈ A or (y, x) ∈ A.
Also, in the sequel, for any integers a and bwith a ≤ b, we will write [[a, b]] = {i ∈ Z : a ≤ i ≤ b}.
An update schedule of the vertices of a digraph G = (V , A), with |V | = n, is a function s : V → [[1, n]] such

that s(V ) = [[1,m]] for some m ≤ n. We denote by Sn the set of update schedules over [[1, n]]. A block of s is the set
Bi = {v ∈ V : s(v) = i}, 1 ≤ i ≤ m. The number of blocks of s is denoted by nb(s) ≡ m. If nb(s) = 1, then s is said to
be a parallel update schedule. In this case, we will write s = sp. If s is a permutation over the set [[1, n]], i.e. nb(s) = n, s is
said to be a sequential update schedule. In all other cases, i.e. when 2 ≤ nb(s) ≤ n − 1, s is said to be a block sequential
update schedule. Frequently, s will be denoted by s = (j ∈ B1)(j ∈ B2) · · · (j ∈ Bnb(s)) or more compactly s = (Bi)

nb(s)
i=1 and

Ps = {B1, . . . , Bnb(s)} the partition associated to s.
As mentioned in [4], the number of update schedules associated to a digraph of n vertices, i.e. |Sn|, is equal to the number

of ordered partitions of a set of size n, that is

|Sn| = Tn ≡

n−1
k=0

n
k


Tk,

where T0 ≡ 1.
Let G be a digraph. A function lab : A(G) → {⊖, ⊕} is called a label function of G. An arc a ∈ A(G) such that lab(a) = ⊕

is called a positive arc and an arc a ∈ A(G) such that lab(a) = ⊖ is called a negative arc. A cycle C in G such that ∀a ∈ A(C),
lab(a) = ⊕ is called a positive cycle and a cycle C in G such that ∀a ∈ A(C), lab(a) = ⊖ is called a negative cycle. (G, lab)
is named a labeled digraph.

Let s be an update schedule of V (G), we denote by labs the label function defined as follows (see Fig. 1):

∀(j, i) ∈ A(G), labs(j, i) =


⊕ if s(j) ≥ s(i)
⊖ if s(j) < s(i).

We define equivalence classeswith respect to labeled digraphs: if s is an update schedule of the vertices of a digraph G, we

write [s]G the set of update schedules s′ such that s
G
∼ s′, that is

[s]G = {s′ : (G, labs) = (G, labs′)}.
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Fig. 1. A digraph G = (V , A) labeled by the function labs where ∀i ∈ V = {1, . . . , 4}, s(i) = i.

Fig. 2. (a) A labeled digraph (G, lab)which is an update digraphwith amaximal (but notmaximum) number of negative arcs. (b) A labeled digraph (G, lab′)

which is not an update digraph.

Fig. 3. (a) A labeled digraph G = ({a, b, c}, A). (b) (GR, labR) where the arcs drawn in dotted lines are the ones that have been inverted.

In simple words, an equivalence class, [s]G, is a set of update schedules that all yield the same labeled digraph, and
consequently the same dynamical behavior of the network [2].

We will say that s has the maximum number of blocks if ∀s′ ∈ [s]G, nb(s′) ≤ nb(s) and we will denote by S∗
n the set of

update schedules having the maximum number of blocks.
A labeled digraph (G, lab) is said to be an update digraph if there exists an update schedule s such that lab = labs,

that is ∀a ∈ A(G), lab(a) = labs(a). We denote by U(G) = {lab : A(G) → {⊖, ⊕}| (G, lab) is an update digraph} and
NU(G) = {lab : A(G) → {⊖, ⊕}| (G, lab) is a non update digraph}. An update digraph (G, lab) has a maximal number of
negative arcs if there is no label function lab∗

∈ U(G) with strictly more negative arcs that lab, and where lab(u, v) = ⊖

implies lab∗(u, v) = ⊖, for every (u, v) ∈ A(G) (see example in Fig. 2).
We define the projection of (G, lab) onto G′

⊆ G as being the labeled digraph (G′, lab|G′), where lab|G′(a) = lab(a), ∀a ∈

A(G′).
Given an update digraph (G, lab), G′

⊆ G is said to be a positive strongly connected component of (G, lab) if G′ is a
strongly connected component of G − {a ∈ A(G) : lab(a) = ⊖}. In particular, if G′ is an isolated vertex, G′ is called a trivial
positive component. Besides, any update digraph (G, lab) has a unique decomposition into positive strongly connected
components.

Let (G, lab) be a labeled digraph. The labeled reoriented multidigraph associated to (G, lab), denoted by (GR, labR), is
the labeled multidigraph defined as follows:
• V (GR) = V (G).
• ∀(u, v) ∈ A(G) such that lab(u, v) = ⊕, (u, v) ∈ A(GR) and labR(u, v) = ⊕.
• ∀(u, v) ∈ A(G) such that lab(u, v) = ⊖, (v, u) ∈ A(GR) and labR(v, u) = ⊖.

Observe that if (G, lab)has no cycle of length twowith a positive arc and another negative, then (GR, labR) is simply a digraph.
An example of labeled reoriented multidigraph is shown in Fig. 3.

A forbidden cycle in (GR, labR) is a cycle containing a negative arc.
In this context, the following characterization of update digraphs was proven in [1].

Theorem 1. A labeled digraph (G, lab) is an update digraph if and only if (GR, labR) does not contain any forbidden cycle.

Observe that if (G, lab) has a negative cycle, then (G, lab) is not an update digraph. Besides, if G is a digraph without circuits,
then for every label function lab : A(G) → {⊖, ⊕}, (G, lab) is an update digraph.
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On the other hand, in [1] it was also shown that the property of being an update digraph can be extended or projected
over update digraphs. Specifically, the authors showed the following Theorem.

Theorem 2. Let G be a digraph and G′
⊆ G. If (G′, lab′) is an update digraph, then there exists a label function lab of A(G) such

that (G, lab) is an update digraph and lab|G′ = lab′.

The above theorem will be fundamental in the following section, to be more explicit, in the relationships between the sizes
of the sets U(G),MFAS(G) and FAS(G) associated to a given digraph G.

3. Feedback arc sets and update digraphs

In this section we will investigate the relationships that exist between the feedback arc sets and the update digraphs
associated to a given digraph, which were first studied in [1].

Next, we first recall a result concerning the sizes of the sets U(G), MFAS(G) and FAS(G) that was shown in [1].

Proposition 3. Let G be a digraph. Then,

|MFAS(G)| ≤ |U(G)| ≤ |FAS(G)|.

Basically, the proof of the Proposition 3 considers, on the one hand, an injective function g : U(G) → FAS(G) such that for
every lab ∈ U(G), g(lab) = {a ∈ A(G) : lab(a) = ⊕} and on the other hand, an injective function h : MFAS(G) → U(G) such
that for every F ∈ MFAS(G), h(F) = labF , where labF (a) = ⊕ ⇔ a ∈ F .

Now, being a little bit more specific, it is easy to see that the label function labp defined by labp(a) = ⊕, ∀a ∈ A(G) is in
U(G) but there does not exist F ∈ MFAS(G) such that h(F) = labp, because for each arc in F there exists a cycle in G which
does not contain another arc in F . Therefore, the function h cannot be surjective and hence, we have the following result.

Proposition 4. Let G be a digraph. Then,

|MFAS(G)| < |U(G)| ≤ |FAS(G)|.

As shown in Proposition 4, there exist relationships between feedback arc sets and update digraphs. Next, we will study in
greater depth this relation.

Proposition 5. Let G be a digraph and G′ ( G where V (G) = V (G′). Then |U(G′)| < |U(G)| and |FAS(G′)| < |FAS(G)|.
Proof. Let G be a digraph with |V (G)| = n and G′ ( G where V (G) = V (G′). Due to Theorem 2, there is a function
f : U(G′) → U(G), lab′

→ f (lab′) = lab, where lab|G′ = lab′. Thus, it is easy to see that f is injective. Hence, |U(G′)| ≤ |U(G)|.
Besides, since G′ ( G and V (G) = V (G′), then ∃(a, b) ∈ A(G)− A(G′). Let s1, s2 ∈ Sn such that s1(a) = s1(b) = s2(a) = 1,

s2(b) = 2, s1(c) = 2 and s2(c) = 3, ∀c ∈ V (G) − {a, b}. Then labs1 |G′ = labs2 |G′ , but labs1 ≠ labs2 . Defining lab′
= labs1 |G′

and supposing w.l.o.g that f (lab′) = labs1 , we deduce that f is not surjective because there is no lab′′
≠ lab′, lab′′

∈ U(G′)
such that f (lab′′) = labs2 . Hence, |U(G′)| < |U(G)|.

On the other hand, the function g : FAS(G′) → FAS(G), F ′
→ g(F ′) = F ′

∪ (A(G) − A(G′)), is evidently injective and
well-defined. Thus, |FAS(G′)| ≤ |FAS(G)|. But for a given (a, b) ∈ A(G) − A(G′), F = A(G) − {(a, b)} ∈ FAS(G), however,
there is no F ′

∈ FAS(G′) such that g(F ′) = F . Hence, g is not surjective and in this way |FAS(G′)| < |FAS(G)|. �

Theorem 6. Let G be an undirected graph and G1 and G2 two orientations of G such that every cycle of G1 is also a cycle of G2.
Then |U(G1)| ≤ |U(G2)| and |FAS(G2)| ≤ |FAS(G1)|.
Proof. Let G, G1 and G2 as in the hypothesis of the proposition. We define the function f : NU(G2) −→ NU(G1),
lab → f (lab) = lab′ by:

∀(u, v) ∈ A(G1), lab′(u, v) =


lab(u, v), if (u, v) ∈ A(G1) ∩ A(G2),

lab(u, v), otherwise

where lab : A(G1) −→ {⊖, ⊕} is defined by:

lab(u, v) = ⊕ ⇔ lab(v, u) = ⊖,

then f is well defined. First, note from definition of lab′ that (G2)R = (G1)R, where (G1)R and (G2)R are the reoriented
multidigraphs associated to (G1, lab′) and (G2, lab) respectively. In thisway, if C is a cycle in ((G2)R, labR)with some negative
arc, then C is also a cycle in ((G1)R, lab′

R) with some negative arc (see Fig. 4).
In fact, suppose on the contrary that C is a cycle in ((G1)R, lab′

R) with all the arcs positive. This is possible if and only if C
is a cycle in (G1, lab′) with all the arcs positive and by hypothesis of the proposition, C is also a cycle in (G2, lab) with all the
arcs positive, which is a contradiction. Therefore, lab ∈ NU(G2) ⇒ f (lab) = lab′

∈ NU(G1).
On the other hand, it is easy to see from the definition of lab′ that f is injective. Therefore, |NU(G2)| ≤ |NU(G1)| and

consequently |U(G1)| ≤ |U(G2)|.
Finally, |NFAS(G1)| ≤ |NFAS(G2)| and consequently |FAS(G2)| ≤ |FAS(G1)|. In fact, if F ⊆ A(G1) is a non-feedback arc set

of G1, then F ′
= {(u, v) ∈ G2 : (u, v) ∈ F ∨ (v, u) ∈ F} is a non-feedback arc set of G2. �
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Fig. 4. (a) An undirected graph G. (b) Two orientations G1 and G2 of G and the injective function f defined in the proof of Theorem 6. Observe that
|U(G1)| = 18 < 20 = |U(G2)| and |FAS(G2)| = 27 < 32 = |FAS(G1)|. (c) The labeled reoriented multidigraph ((G2)R, labR) associated to (G2, lab). (d) The
labeled reoriented multidigraph ((G1)R, lab′

R) associated to (G1, lab′).

Proposition 7. Let G be a digraph. Then, |U(G)| = |FAS(G)| if and only if all the circuits of G are cycles.

Proof. (⇒) Let us suppose that G has a circuit C which is not a cycle. We will prove that |U(G)| < |FAS(G)|. Let (G, lab)
be an update digraph. Then {a ∈ A(G) : lab(a) = ⊕} is a feedback arc set of G induced by the function lab, and thus
|U(G)| ≤ |FAS(G)|. We will show that there is another feedback arc set F ′ of G not induced by any element of U(G). Indeed,
there exists a label function lab′ such that the circuit C is a forbidden circuit of (G, lab′) with at least a positive arc and a
negative arc in C . Let F ′

= A(G) − {a ∈ A(C) : lab′(a) = ⊖}. It is easy to check that F ′ is a feedback arc set of G which is not
induced by any element in U(G).
(⇐) Let us suppose that all circuits of G are cycles. We want to prove that |FAS(G)| ≤ |U(G)|.

We define the following function TG : FAS(G) −→ U(G) such that for each feedback arc set F ∈ FAS(G), TG(F) is the label
function:

TG(F)(a) =


⊕, if a ∈ F ,
⊖, if a ∉ F .

Then, TG(F) ∈ U(G). Indeed, if there exists a forbidden circuit C in (G, TG(F)), there is at least an arc a ∈ A(C) such that
TG(F)(a) = ⊕. Since, if for all a ∈ C , TG(F)(a) = ⊖ then A(C) ∩ F = ∅, which contradicts the fact: F ∈ FAS(G). Besides,
there exists a′

∈ A(C), TG(F)(a′) = ⊖. Hence, C is a circuit in G which is not a cycle, which is a contradiction. Therefore, TG
is well-defined and obviously injective. �

From the proof of Proposition 3, we know that to each F ⊆ A(G), a minimal feedback arc set of G, can be associated a label
function labF such that (G, labF ) is an update digraph. However, the opposite is not always possible. Next, the following
theorem shows a characterization of the update digraphs (G, lab) induced by a minimal feedback arc set.

Theorem 8. Let G be a digraph with |V (G)| = n. Then, F ⊆ A(G) is a minimal feedback arc set of G if and only if (G, labF ) is an
update digraph with a maximal number of negative arcs, where labF (u, v) = ⊕ ⇔ (u, v) ∈ F .

Proof. (⇒) Let G be a digraph with |V (G)| = n and F a minimal feedback arc set of G. From the proof of Proposition 3, we
know that (G, labF ) is an update digraph.

Suppose on the contrary that (G, labF ) does not have amaximal number of negative arcs, i.e., there exists a label function
lab with strictly more negative arcs than labF such that (G, lab) is an update digraph, and where labF (u, v) = ⊖ implies
lab(u, v) = ⊖, for every (u, v) ∈ A(G). Then F ′

= {(u, v) ∈ A(G) : lab(u, v) = ⊕} is a feedback arc set of G and verifies
F ′ ( F , which contradicts the minimality of F . Hence, (G, labF ) is an update digraph with maximal number of negative arcs.
(⇐) Let labF be a label function for which (G, labF ) is an update digraph with maximal number of negative arcs. We know
that F ⊆ A(G) is a feedback arc set of G because (G, labF ) is an update digraph, which implies that G − F is acyclic.

Now, suppose on the contrary that F is not minimal, i.e, there exists a minimal feedback arc set F ′
⊆ F of G and

consequently a label function labF ′ with which (G, labF ′) is also an update digraph, but having the same negative arcs as
(G, labF ) and more. This contradicts the maximality of (G, lab). Therefore, F is a minimal feedback arc set of G. �

Remark 9. It is easy to see that a labeled digraph (G, lab) with all its arcs negative is an update digraph if and only if G is an
acyclic digraph (see [9]). However, in the general case, we have the following result.

Proposition 10. An update digraph (G, lab) with maximum number of negative arcs has at least |A(G)|

2 negative arcs.
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Proof. Let (G, lab) be an update digraph and na(G, lab) = |{(u, v) ∈ A(G) : lab(u, v) = ⊖}| the number of negative arcs of
(G, lab).

If G is an acyclic digraph, then (G, lab) with all its arcs negative is an update digraph, i.e. na(G, lab) = |A(G)|.
If G has a cycle, then let sq1 = (v1)(v2) · · · (vn) and sq2 = (vn)(vn−1) · · · (v1) two sequential update schedules with

vi ∈ V (G), ∀i ∈ [[1, n]]. Then, ∀i, j ∈ [[1, n]] such that (vi, vj) ∈ A(G),

labsq1 (vi, vj) = ⊖ ⇔ labsq2 (vi, vj) = ⊕.

Thus, since (G, lab) has the maximum number of negative arcs, na(G, lab) ≥ max{na(G, labsq1 ), na(G, labsq2 )} ≥
|A(G)|

2 . �

Proposition 11. Let (G, lab) be an update digraph with a maximal number of negative arcs. Then, there is no positive cycle.
Proof. Let (G, lab) be an update digraph with a maximal number of negative arcs, i.e, there is no positive arc that can be
changed by a negative arc holding the property of update digraph. Let s be an update schedule such that (G, lab) = (G, labs)
and suppose on the contrary that there is a positive cycle C , then there exists (i, j) ∈ A(C) such that s(i) = s(j). Defining s′ by:

s′(k) = s(k), ∀k, s(k) < s(i)
s′(i) = s(i)
s′(k) = s(k) + 1, ∀k ≠ i, s(k) ≥ s(i)

we have labs(u, v) = ⊖ ⇒ labs′(u, v) = ⊖, but labs(i, j) = ⊕ ≠ labs′(i, j) which contradicts the maximality of (G, lab). �

Proposition 12. Let (G, lab) be an update digraph. Then, there is a sequential update schedule sq such that (G, lab) = (G, labsq)
if and only if (G, lab) has no positive cycle.
Proof. (⇒) Straightforward.
(⇐) Let (G, lab) be an update digraph with |V (G)| = n and without positive cycles, then (GR, labR) has no cycles. Therefore,
there exists a topological order i1, . . . , in of the vertices, i.e., (ij, ik) ∈ A(GR) ⇒ k > j, such that sq = (i1)(i2) . . . (in) is a
sequential schedule satisfying (G, lab) = (G, labsq). �

In general, the necessary condition of Proposition 11 is not sufficient. As a counter-example,we can consider a simple labeled
digraph (G, lab) composed by only one positive arc (a, b) which is obviously an update digraph without positive cycles, but
not maximal. Nevertheless, Theorem 16 of the next section shows that in update complete digraphs, the sufficiency holds.

3.1. Feedback arc sets in update complete digraphs

In the particular case of complete digraphs, we will see howmany of the properties of update digraphs and feedback arc
sets previously mentioned are equivalent, establishing an explicit form for determining the setMFAS(G).

Remark 13. Let G be a complete digraph with |V (G)| = n and F a minimal feedback arc set of G. Then, |F | =
 n
2


and a

feedback arc set is minimal (with respect to set inclusion) if and only if it is minimum (with respect to size). In fact, suppose
that |F | >

 n
2


, then necessarily there exist u, v in V (G) such that {(u, v), (v, u)} ⊆ F . Since F is a feedback arc set, there

exists path P1 = u1, . . . , uk with u1 = v, uk = u which does not contain any arc of F (in particular the arc (v, u)), for some
k ∈ [[2, n]] and ui ∈ V (G), ∀i ∈ [[1, k]]. Analogously, there exists path P2 = v1, . . . , vj with v1 = u, vj = v which does not
contain any arc of F (in particular the arc (u, v)), for some j ∈ [[2, n]] and vi ∈ V (G), ∀i ∈ [[1, j]]. Thus, joining the paths P1
and P2 we deduce the existence of a cycle which does not contain any arc of F , a contradiction because F is a feedback arc
set. Hence |F | ≤

 n
2


. On the other hand, |F | ≥

 n
2


because G has

 n
2


cycles of length two.

The following proposition is a simple characterization of update complete digraphs.

Proposition 14. Let G be a complete digraph. Then, (G, lab) is a non update digraph if and only if there exists a forbidden cycle
of length either two or three in GR.
Proof. (⇐) It is straightforward.
(⇒) Let (G, lab) be a non-update complete digraph. Then, there exists a forbidden cycle CR of smallest length in (GR, labR).
Let suppose that the length of CR is strictly greater than three.

Let C be the forbidden circuit associated to CR in G. If C has a path of the form (a, b), (b, c) ⊕-labeled, then necessarily
(a, c) is also positive in G because otherwise, there would exist a forbidden cycle C ′ of length three strictly smaller than CR in
GR. Analogously, if C has a path of the form (a, b), (b, c) ⊖-labeled, then necessarily (a, c) is negative (see Fig. 5: (a) and (b)).

Therefore, we can suppose that C does not have two consecutive arcs with the same label. But when, for example,
lab(b, a) = ⊖ and lab(b, c) = ⊕, necessarily the arc (c, a) is negative in G (i.e., (a, c) is negative in GR), because on the
contrary, there would exist a forbidden cycle C ′ of length three smaller than CR in GR (see Fig. 5: (c) and (d)).

In this way, it is always possible to reduce the length of the forbidden cycle CR up to a length of three. �

Proposition 15. Let G be a complete digraphwith |V (G)| = n. Then, F is aminimal feedback arc set of G if and only if G′
= G−F

is an acyclic tournament.
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Fig. 5. Proof idea of Proposition 14. (a) When the arcs (a, b) and (b, c) are positive in C , then necessarily (a, c) is also positive in C . (b) When the arcs (a, b)
and (b, c) are negative in C , then necessarily (a, c) is also negative in C . (c) If lab(b, a) = ⊖ and lab(b, c) = ⊕ in C , then necessarily lab(c, a) = ⊖. (d) If
lab(a, b) = ⊖ and lab(c, b) = ⊕ in C , then necessarily lab(a, c) = ⊖.

Proof. (⇒) Let F be a minimal feedback arc set of G, then G′
= G − F represents an acyclic digraph. Besides, G′ is a

tournament. In fact, suppose on the contrary that G′ is not a tournament, i.e., there is a pair of vertices a, b in V (G′) such that
{(a, b), (b, a)} ∩ A(G′) = ∅. That means {(a, b), (b, a)} ⊆ F and since F must have at least one arc for each pair of vertices
of V (G), we have |F | ≥

 n
2


+ 1, which is a contradiction because by Remark 13, |F | =

 n
2


.

(⇐) Let G′ be an acyclic tournament, then F = A(G)− A(G′) is a minimal feedback arc set of G, because |F | = |A(G)− A(G′)|
=

 n
2


. �

Theorem 16. Let (G, lab) be an update complete digraph with |V (G)| = n. The following statements are equivalent:

(i) (G, lab) has a maximal number of negative arcs.
(ii) The digraph induced by the negative arcs of (G, lab) is an acyclic tournament.
(iii) (G, lab) has no positive cycle.

Proof. Let (G, lab) be an update complete digraph with |V (G)| = n.
(i)⇒(ii). If (G, lab) has a maximal number of negative arcs, then by Theorem 8, F = {(u, v) ∈ A(G) : lab(u, v) = ⊕} is a
minimal feedback arc set of G. Hence, by Proposition 15, G′

= G − F is an acyclic tournament, i.e., the digraph induced by
the negative arcs of (G, lab) is an acyclic tournament.
(ii)⇒(iii). If the digraph induced by the negative arcs of (G, lab) is an acyclic tournament, then the digraph induced by the
positive arcs of (G, lab) is also an acyclic tournament because G is a complete digraph, i.e. (G, lab) has no positive cycle.
(iii)⇒(i). If (G, lab) has no positive cycle, then all its cycles of length twohave only one negative arc. Since a complete digraph
has

 n
2


cycles of length two, (G, lab) has at least

 n
2


negative arcs, but this is the maximum number, and thus the maximal

number of negative arcs that an update complete digraph can have. �

Corollary 17. Let G be a complete digraph with |V (G)| = n. Then, |MFAS(G)| = |{lab : (G, lab) is an update digraph with
maximal number of negative arcs }| = n!

Proof. It is easy to see that the number of acyclic tournaments of size n is n!. Then, the Corollary 17 follows from Theorem 8
and Proposition 15. �

Note also due to Theorem 8, Proposition 12 and Theorem 16 that finding all possibleminimal feedback arc sets of a complete
digraph can be made considering the update digraphs associated with the n! different sequential update schedules, where
a minimal feedback arc set will consist of their positive arcs. In other words, if G is a complete digraph, then,

MFAS(G) = {F ⊆ A(G) : labsq(a) = ⊕ ⇔ a ∈ F ∧ sq sequential}.

4. Tournaments and update digraphs

In the previous sections, we found bounds for the sizes of the schedule equivalence classes associatedwith a given update
digraph G as well as relationships between the sets U(G), MFAS(G) and FAS(G). In this section, we will restrict to classical
families such as acyclic digraphs, complete digraphs and tournaments in order to determine exactly the number and size of
their schedule equivalence classes. Also we will show how the number of negative arcs of a given update digraph (G, lab) is
related to these families and the feedback arc sets.
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Theorem 18. Let G be an acyclic digraph with |V (G)| = n. Then,

(a) |U(G)| ≤ n!.
(b) |U(G)| = n! ⇔ G is a tournament.
(c) If G is a tournament, then for each update schedule s of G, |[s]G| = 2k, for some k ∈ N ∪ {0}.

Proof. (a) For every lab ∈ U(G), (G, lab) has no positive cycle. Hence, by Proposition 12 there exists a sequential schedule
sq such that (G, lab) = (G, labsq).

Therefore, since the number of different sequential update schedules is n!, we have:

|U(G)| ≤ n!

(b) (⇐) Let G be a tournament with |V (G)| = n and let s1, s2 be two different sequential update schedules, then by
tournament definition there is (i, j) ∈ A(G) such that labs1(i, j) ≠ labs2(i, j). Since every sequential update schedule s
defines a different update digraph (G, labs) and the number of different sequential update schedules is n!, we have:

|U(G)| ≥ n!

and due to (a), we conclude that |U(G)| = n!.
(⇒) Let G be an acyclic digraph with |V (G)| = n and |U(G)| = n!. Suppose on the contrary that G is not a tournament,
then necessarily there exist u, v in V (G)without arcs between them (to have two arcs between them is not possible because
G is acyclic) which implies that there are two different sequential update schedules with the same update digraph. This
contradicts the fact that |U(G)| = n!. Therefore, G is also a tournament.
(c) Let T be an acyclic tournament. We proceed by induction onm = |V (T )|.
Basis Step, m = 2. There are two possibilities: the equivalence classes of the parallel update schedule sp, where it is easy to
see that |[sp]T | = 21

= 2, and those of the sequential update schedule sq ∉ [sp]T , where clearly |[sq]T | = 20
= 1.

Induction Hypothesis. T an acyclic tournament withm ≤ n − 1. Hence, for each update schedule s over V (T ), |[s]T | = 2k, for
some k ∈ N ∪ {0}.

Let G be an acyclic tournament with |V (G)| = n. First, note that the proof of (b) implies the existence of a bijection
f : U(G) → {s ∈ Sn : s sequential update schedule on V (G)}. Let (G, labs) be an update digraph with the sequential update
schedule s = (i1)(i2) · · · (ij)(n)(ij+1) · · · (in−1), where {i1, . . . , in−1} = {1, . . . , n − 1}.

Let G′
= G − {n}. Clearly, G′ is an acyclic tournament with |V (G′)| = n − 1 and s′ = (i1) · · · (ij)(ij+1) · · · (in−1) is

a sequential update schedule such that (G′, labs′) is the labeled subdigraph of (G, lab) induced by {i1, . . . , in−1}. Defining
Sdif = {s∗ ∈ [s′]G′ : s∗(ij) = s∗(ij+1) − 1} ≠ ∅ and Seq = {s∗ ∈ [s′]G′ : s∗(ij) = s∗(ij+1)}, we can see that if Seq ≠ ∅, then
|Sdif | = |Seq| = 2k−1 for some k ∈ N ∪ {0}.

There are the following 23
= 8 cases:

Case 1. labs(ij, n) = ⊖ and labs(ij+1, n) = labs(ij+1, ij) = ⊕ (see Fig. 6(a)).
To obtain all the elements of [s]G, for every s∗ ∈ Sdif , it is enough to generate s1 and s2 in [s]G where s1(p) = s2(p) = s∗(p),

∀p ∈ V (G′) such that s∗(p) ≤ s∗(ij); s1(n) = s2(n) = s∗(ij) + 1 and s2(q) = s1(q) − 1 = s∗(q), ∀q ∈ V (G′) satisfying
s∗(q) ≥ s∗(ij+1). In this way, |[s]G| = 2 · |Sdif | = 2k for some k ∈ N ∪ {0}.
Case 2. labs(n, ij) = labs(ij+1, n) = labs(ij+1, ij) = ⊕ (see Fig. 6(b)).

To obtain all the elements of [s]G, for every s∗1 ∈ Sdif , we generate s1, s2 and s3 in [s]G where s1(p) = s2(p) = s3(p) = s∗1(p),
∀p ∈ V (G′) such that s∗1(p) ≤ s∗1(ij); s1(n) = s3(n) = s2(n)+1 = s∗1(ij)+1 and s2(q) = s3(q) = s1(q)−1 = s∗1(q),∀q ∈ V (G′)
satisfying s∗1(q) ≥ s∗1(ij+1). And for every s∗2 ∈ Seq, we generate s4 ∈ [s]G defined by s4(p) = s∗2(p), ∀p ∈ V (G′), p ≠ n and
s4(n) = s∗2(ij). Therefore, |[s]G| = 3 · |Sdif | + |Seq| = 3 · 2k−1

+ 2k−1
= 2k+1 for some k ∈ N ∪ {0}.

Case 3. labs(ij, n) = labs(ij, ij+1) = labs(n, ij+1) = ⊖ (see Fig. 6(c)).
Here, for each s∗1 ∈ Sdif , we generate s1 ∈ [s]G where s1(p) = s∗(p), ∀p ∈ V (G′) such that s∗(p) ≤ s∗(ij); s1(n) = s∗(ij)+1

and s1(q) = s∗(q) + 1, ∀q ∈ V (G′) satisfying s∗(q) ≥ s∗(ij+1). Therefore, |[s]G| = |Sdif | = 2k−1 for some k ∈ N ∪ {0}.
Case 4. labs(ij, n) = labs(ij, ij+1) = ⊖ and labs(ij+1, n) = ⊕.
Case 5. labs(n, ij) = labs(ij+1, ij) = ⊕ and labs(n, ij+1) = ⊖.
Case 6. labs(n, ij+1) = labs(ij, ij+1) = ⊖ and labs(n, ij) = ⊕.

Cases 4, 5 and 6 are similar to case 1. �

Observe that the assertion (c) of Theorem 18 is not true for tournaments in general (see Fig. 7 as a counter-example).

Corollary 19. Let (G, lab) be an update digraph where G is an acyclic tournament. Then, all arcs of (G, lab) are negative, if and
only if there exists a sequential update schedule sq such that (G, lab) = (G, labsq) and |[sq]G| = 1.

Proof. Let G be an acyclic tournament. First, observe that every acyclic digraph (G, lab)with all its arcs negative is an update
digraph.
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Fig. 6. Proof idea of Theorem 18. (a) Case 1. (b) Case 2. (c) Case 3.

Fig. 7. An update digraph (G, labs) where |[s]G| = |{(a)(b)(c), (a)(b, c), (a, b)(c)}| = 3.

Fig. 8. Proof idea of Corollary 19. (a) Case j = i + 1. If there is a positive arc from the Bi+1 to Bi , it is possible to construct a new update schedule s ≠ sq
with block B′

i = Bi ∪ Bi+1 . (b) Case j > i + 1. There is necessarily a cycle (vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj), (vj, vi).

(⇒) Suppose that all |A(G)| =
 n
2


arcs of (G, lab) are negative. Then, by Proposition 12, there exists a sequential update

schedule sq such that (G, lab) = (G, labsq). Now, suppose that there exists another update schedule s ≠ sq such that s ∈ [sq]G.
By Theorem 18, we know that s cannot be a sequential schedule. If s is an update schedule but not sequential, then there is a
block Bi of s, 1 ≤ i ≤ nb(s) < |V (G)|, such that |Bi| > 1, i.e., there exists u, v in Bi such that the arc (u, v) ∈ A(G) is positive
in (G, labs), but the same arc is negative in (G, labsq), which is a contradiction. Therefore, |[sq]G| = 1.

(⇐) Let sq = (v1)(v2) · · · (vn) be a sequential update schedule such that (G, lab) = (G, labsq), |[sq]G| = 1 and V (G) =

{v1, . . . , vn}. Since (G, lab) is an update tournament, for every pair of vertices vi, vj in V (G), there is only one arc be-
tween them, either the negative arc (vi, vj) or the positive arc (vj, vi) with i, j ∈ {1, . . . , n}. Observe that ∀i = 1, . . . ,
n − 1, (vi, vi+1) ∈ A(G), since otherwise there would be another update schedule s ≠ sq, s = (v1)(v2) · · · (vi−1)(vi, vi+1)
(vi+2) · · · (vn) such that (G, lab) = (G, labsq) = (G, labs), which contradicts that |[sq]G| = 1 (see Fig. 8(a)). Besides, for every
i ≠ j ∈ {1, . . . , n} such that j > i + 1, (vi, vj) ∈ A(G) because if there exists the positive arc (vj, vi), from the above men-
tioned, we would have the existence of the negative arcs (vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj) which implies the existence
of a cycle (see Fig. 8(b)). It would be a contradiction, because G is acyclic. Therefore, all arcs of (G, lab) must be negative. �

Observe from the previous proof, that if G is a tournament with at least one cycle, then there exists an update schedule s
such that [s]G does not contain a sequential schedule. Hence, |U(G)| > n!.
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Theorem 20. Let G be a digraph with |V (G)| = n, P = {Bi}
m
i=1 a partition of V (G), m ≤ n, and sπ = (Bπ(i))

m
i=1 ∈ Sn, where π

is a permutation over [[1,m]]. Then, the following statements are equivalents:
(1) sπ ∈ S∗

n .
(2) ∀i ∈ [[1,m]], G[Bi] is a positive strongly connected component of (G, labsπ ).
(3) ∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph of G.
Proof. Let G be a digraph with |V (G)| = n, P = {Bi}

m
i=1 a partition of V (G), m ≤ n, and sπ = (Bπ(i))

m
i=1 ∈ Sn, where π is a

permutation over [[1,m]].
(1) ⇒ (2) Suppose that sπ = (Bπ(i))

m
i=1 ∈ S∗

n , i.e., sπ has the maximum number of blocks. We note that P is the partition
associated to sπ . Now, let us prove that ∀i ∈ [[1,m]], G[Bi] is a positive strongly connected component of (G, labsπ ), i.e. G[Bi]

is a strongly connected component of G′
= G − {a ∈ A(G) : labsπ (a) = ⊖}. If |Bi| = 1, then the proof is done. Hence,

we can assume w.l.o.g. that |Bi| ≥ 2. Suppose on the contrary that G[Bi] is not a positive strongly connected component
of (G, labsπ ). Then, either G[Bi] is not a subdigraph of G′, which means that ∃a ∈ A(G′) ∩ A(G), labsπ (a) = ⊖, but this is
impossible because (G, labsπ ) is an update digraph, or G[Bi] is a strongly connected subdigraph of G′, but not maximal for
this property. i.e., ∃u ∉ Bi strongly connected with the nodes of Bi by positive arcs, this means that sπ (u) = sπ (j), ∀j ∈ Bi,
which is a contradiction because u ∉ Bi, orG[Bi] is not strongly connected, then there exists a strongly connected component
U ⊆ Bi which is a source, i.e. without incoming arc to U , having initial vertex in Bi −U . Thus, since G[Bi] = G[Bπ(j)] for some
j ∈ [[1,m]], there is another update schedule s′ = (k ∈ Bπ(1)) · · · (k ∈ Bπ(j) −U)(k ∈ U)(k ∈ Bπ(j+1)) · · · (k ∈ Bπ(m)) on V (G)
such that s′ ∈ [sπ ]G and nb(s′) = nb(sπ ) + 1 = m + 1, which contradicts that sπ has the maximum number of blocks.
(2) ⇒ (3) If G[Bi] is a positive strongly connected component of (G, labsπ ), then G[Bi] is a strongly connected component of
G′

= G − {a ∈ A(G) : labsπ (a) = ⊖} ⊆ G, i.e., G[Bi] is a strongly connected subdigraph of G.
(3) ⇒ (1) Suppose that∀i ∈ [[1,m]],G[Bi] is a strongly connected subdigraph ofG. Let s′ ∈ [sπ ]G, then (G, labs′) = (G, labsπ ).
Thus, s′ must satisfy that for every i ∈ [[1,m]], s′(j) = s′(k), ∀j, k ∈ Bi, because s′ is an update schedule on V (G) and
∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph of G with all its arcs positive in (G, labsπ ). Hence, P = {Bi}

m
i=1 is also

the partition of V (G) associated to s′, then necessarily nb(s′) = nb(s) = m. Therefore, we have shown that, ∀s′ ∈ [sπ ]G,
nb(s′) ≤ nb(sπ ), i.e., sπ ∈ S∗

n . �

Lemma 21. Let G be a digraphwith |V (G)| = n, containing a tournament of n vertices as a subdigraph. Then, for every s1, s2 ∈ S∗
n

such that s1 ≠ s2, we have: (G, labs1) ≠ (G, labs2).
Proof. Let G be a digraph with |V (G)| = n containing a tournament of n vertices as a subdigraph. Let s1, s2 ∈ S∗

n , s1 ≠ s2 and
suppose on the contrary that (G, labs1) = (G, labs2). Let s1 = (B1

i )
nb(s1)
i=1 , s2 = (B2

i )
nb(s2)
i=1 and j = min{i : B1

i ≠ B2
i }. Hence, there

are two cases:
Case 1. B1

j ∩ B2
j ≠ ∅. Then, from (2) of Theorem 20, B1

j and B2
j are positive strongly connected components of (G, labs1). On

the other hand, because the decomposition of (G, labs1) in positive strongly connected components is unique, then B1
j = B2

j ,
which is a contradiction.
Case 2. B1

j ∩ B2
j = ∅. Then, ∃p ∈ B1

j , ∃q ∈ B2
j , p ≠ q: s1(p) < s1(q) ∧ s2(q) < s2(p). Since G has a tournament of n vertices,

(p, q) ∈ A(G) ∨ (q, p) ∈ A(G), i.e., labs1(p, q) ≠ labs2(p, q) ∨ labs1(q, p) ≠ labs2(q, p), which contradicts that (G, labs1) =

(G, labs2).
Therefore, (G, labs1) ≠ (G, labs2). �

Theorem 22. Let G be a digraph with |V (G)| = n, containing a tournament of n vertices as a subdigraph. Then, |U(G)| = |S∗
n |.

Proof. Let G be a digraph with |V (G)| = n, containing a tournament of n vertices as a subdigraph.
Evidently, due to Lemma 21, we have |U(G)| ≥ |S∗

n |.
On the other hand, ∀lab ∈ U(G), ∃s ∈ Sn: (G, lab) = (G, labs). Hence, ∃s′ ∈ [s]G with the maximum number of blocks.

Thus, |U(G)| ≤ |S∗
n |. �

Observe from Theorem 20 that:
S∗

n = {(Bπ(i))
m
i=1 : P = {Bi}

m
i=1 ∈ P∗

n ∧ π is a permutation over [[1,m]]},

where P∗
n is the set of partitions P = {Bi}

m
i=1 of V (G) such that ∀i ∈ [[1,m]], G[Bi] is a strongly connected subdigraph of G.

Thus, we obtain straightforwardly the following corollary:

Corollary 23. Let G be a digraph with |V (G)| = n containing a tournament of n vertices as a subdigraph. Then:

|U(G)| =


P∈P∗

n

card(P)!.

Note that if G is an acyclic tournament of n vertices, the only strongly connected subdigraphs are the trivial ones, i.e., P∗
n =

{{{1}, . . . , {n}}} and therefore,

|U(G)| =


P∈P∗

n

card(P)! = card({{1}, . . . , {n}})! = n!,

giving the result (b) of Theorem 18.
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On the other hand, if G is a complete digraph with |V (G)| = n, then every subset of vertices defines a strongly connected
subdigraph of G. In this way, P∗

n is the set of all the possible partitions over V (G) and therefore, |U(G)| = Tn =
n−1

k=0

 n
k


Tk,

with T0 ≡ 1, as was obtained in [4,1]. Moreover, if G1 and G2 are two orientations of a complete undirected graph satisfying
the conditions of Theorem 6, then a strongly connected subdigraph of G1 is also a strongly connected subdigraph of G2.
Therefore, Corollary 23 implies that |U(G1)| ≤ |U(G2)|, as established in Theorem 6.
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