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Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of
genetic networks. The dynamics of such systems is characterized by the local activation functions and the
update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of
knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by
proving that the problem of the existence of a pair of update schedules with different dynamics is NP-
complete. However, we show that certain structural properties of the interaction digraph are sufficient
for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have
the property that all the update schedules of a given class yield the same dynamics. In order to determine
the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equiv-
alence classes by selecting a representative update schedule for each class with a minimum number of
blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine
the full spectrum of its different dynamics.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Deterministic Boolean networks have been introduced in
Systems Biology by Kauffman [2,3] to model the dynamics of
genetic networks. In the original scheme all the nodes are updated
at each time step, in parallel (this scheme is also called synchro-
nous updating). This kind of updating has given rise to an
enormous mathematical literature.

A more general scheme is to consider that the set of network
nodes is partitioned into blocks and that the nodes in a block are
updated simultaneously, the blocks being considered in a given
sequence (block-sequential schedule). This generalizes the
previous case because the parallel case corresponds to a single
block. It also generalizes the so-called sequential Boolean systems
where every node is updated in a defined sequence at every time
step.

On different grounds it was realized that the purely synchro-
nous (parallel) updating was not satisfactory for modeling genetic
networks and several extensions were proposed in the literature.
Gershenson [4] defined the so-called Deterministic Generalized
ll rights reserved.
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Asynchronous RBNs (DGARBNs), for which a node i is updated if
it satisfies an updating condition (depending on two parameters
Pi and Q i associated to the node). When several nodes satisfy their
condition simultaneously they are updated synchronously.
Gershenson calls this kind of Boolean network semi-synchronous.

Thomas, Thomas et al. and Thomas and Kauffman [5–7] devel-
oped a different approach in which the Boolean model is viewed
as an abstraction of a system of piecewise-linear differential equa-
tions with diagonal matrix, and is consequently non-deterministic
(in the sense that a given state may have several successors).
Thomas also introduced time delays and even considered the pos-
sibility that these delays may be stochastic, but the occurence of
non-determinism is intrinsically linked to the fact that the Boolean
model is a discrete abstraction of a dynamical system: the contin-
uous state space is partitioned into rectangular domains, and so is
the parameter space. The loss of information induced by the
abstraction entails an uncertainty in the successor of a state and
the formalism of Thomas is designed to include all the admissible
transitions from a state. A transition graph computed with these
rules includes all the possible dynamics compatible with a given
network architecture (but conversely an arbitrary path from the
transition graph does not necessarily represent a valid behavior).

The formalism of Thomas is at first sight quite different from
the Boolean networks with deterministic updating rules. It was
nevertheless recognized that deterministic synchronous updating
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can often be recovered as a simplification of the Thomas dynamics
[8].

In the present paper we will call Boolean network an entity
made of (i) a directed graph (called interaction graph, the nodes
of which represent the genes); (ii) an activation function for each
node, which specifies the next state of the node given the state
of the predecessor nodes; (iii) an update schedule s which specifies
the order in which the nodes are updated. In other words the func-
tion s defines the ordered partition into blocks of the set of nodes.

In this framework, Aracena et al. [1] proved that two Boolean
networks differing only by their update schedules may have
exactly the same dynamics. They introduced a new kind of signed
digraph, called update digraph, which defines for each arc whether
the tail is updated before or after the head of the arc. Equivalence
classes of update schedules have been defined on these grounds
and the robustness of the dynamics with respect to perturbation
of the schedules has been studied. In [9] the combinatorial and
algorithmical aspects of update digraphs were studied. In particu-
lar bounds on the number of equivalence classes were obtained.

One of the main analytical studies of equivalent update sched-
ules in discrete networks has been made in sequential dynamical
systems (SDS) [10,11]. These systems correspond to networks with
sequential schedules and where the connection digraph is sym-
metric. Reidys [12] characterized the set of equivalent sequential
schedules yielding a same dynamical behavior of a given SDS and
gave a sharp upper bound for the number of different SDS. In [1]
it was proved that these equivalence classes coincide with those
defined in this paper in the particular case of SDS. For a more gen-
eral case of SDS when the update order is a word (the alphabet is
the set of nodes) and the interaction graph is a digraph, an upper
bound was given in [13]. However, this case does not include the
block-sequential update schedule considered in this work.

Our perspective in this paper is the modeling of specific biolog-
ical phenomena. The problem is thus one of inference: how to infer
a Boolean network whose behavior matches the observed behav-
iors? We will focus here more precisely on the update schedules
and their equivalence classes. We showed in [9] that for complete
digraphs there is exactly 1 update schedule per class. The architec-
ture of networks encountered in biology is generally rather sparse
and in that case a given class may contain many update schedules
(thus associated to the same dynamics). This means that the infor-
mation contained in the dynamics of a system pertains only to the
equivalence classes. In other words such observations do not allow
to distinguish two update schedules belonging to the same class.
Consequently in the context of building models from data it is very
important to characterize the classes in order to optimize the infer-
ence process. In [14] we give an exact formula for the number of
equivalence classes for a large class of digraphs. In the present
paper we focus on the enumeration of the equivalence classes of
a given digraph.

Section 2 provides the necessary definitions for the sequel. All
the schedules belonging to a given class generate the same dynam-
ics, but conversely two different classes are not necessarily associ-
ated to different dynamics. Section 3 gives some results related to
this issue; first, we point out the difficulty of knowing the different
dynamics for a given network, problem that, to our knowledge, has
not been studied in depth, yet. More specifically, we prove that the
problem of determining whether there exist two different update
schedules for a given network such that the associated dynamics
are different is, in fact, NP-Complete. We prove a proposition which
ensures the existence of different dynamics providing that the
corresponding digraph has some structural property. We illustrate
this result in the case of a particular family of digraphs where the
choice of the activation function of each node can lead to two
extreme situations: either all the dynamics are identical or they
are all different. We explain how the analysis of update schedules
yielding the same dynamics gives us bounds for the number of dif-
ferent dynamics in a given network. At the end of the section it
should be clear that large computational savings would be
achieved by an efficient algorithm enumerating the equivalence
classes compatible with a given network architecture (digraph).
In Section 4 we propose such an efficient algorithm.

Finally in Section 5, our theoretical and computational tools are
applied to the study of the flower morphogenesis of the plant A.
thaliana [15]. More specifically, we work with the reduced model
defined by Demongeot et al. [16] which has two non-trivial con-
nected components of 3 and 4 genes. Our results allow us to com-
pute just one update schedule for each equivalence class, instead of
enumerating all update schedules, and we show that this entails a
significant reduction of the computational work. We are then able
to compute the full spectrum of all the different dynamics associ-
ated with each component of the A. thaliana network.

2. Definitions

This section provides basic definitions and introduces the nec-
essary notations.

In the sequel, for any integers a and b with a 6 b, we will denote
½½a; b�� ¼ fi 2 Z : a 6 i 6 bg.

A digraph is an ordered pair of sets G ¼ ðV ;AÞ where
V ¼ f1; . . . ;ng is a set of elements called vertices (or nodes) and
A is a set of ordered pairs (called arcs) of vertices of V. The vertex
set of G is referred to as VðGÞ, its arc set as AðGÞ. For a vertice i 2 V
we denote V�ðiÞ ¼ fj 2 V : ðj; iÞ 2 Ag.

A subdigraph of G is a digraph G0 ¼ ðV 0;A0Þ where V 0 # V and
A0 # ðV 0 � V 0Þ \ A. We write G0 # G.

A path from a vertex v1 to a vertex vm in a digraph G is a
sequence of vertices v1;v2; . . . ;vm of VðGÞ such that
ðvk;vkþ1Þ 2 AðGÞ for all k ¼ 1; . . . ;m� 1. A cycle is a path
v1; . . . ;vm such that v i – v j for all i – j with i; j 2 f2; . . . ;m� 1g
and v1 ¼ vm.

More terminology about digraphs can be found in [17].
A (deterministic) update schedule over the vertices of G with

jVðGÞj ¼ n, is a function s : ½½1;n�� ! ½½1;n�� such that
sðVðGÞÞ ¼ ½½1;m�� for some m 6 n. A partial update schedule is an
update schedule over the vertices of some G0 # G. A block of s is
the set Bi ¼ fv 2 VðG0Þ : sðvÞ ¼ ig;1 6 i 6 m. The number of
blocks of s is denoted by nbðsÞ � m. Frequently, s will be denoted
by s ¼ ðj 2 B1Þðj 2 B2Þ . . . ðj 2 BnbðsÞÞ or more compactly s ¼ ðBiÞnbðsÞ

i¼1 .
Let G0 ¼ G. If nbðsÞ ¼ 1, then s is said to be a parallel update

schedule. In this case, we will write s ¼ sp. If s is a permutation over
the set ½½1;n��, i.e. nbðsÞ ¼ n; s is said to be a sequential update sche-
dule. In all other cases, i.e. when 2 6 nbðsÞ 6 n� 1; s is said to be a
block sequential update schedule. As was mentionned in [18], the
number Tn of deterministic update schedules associated to a
digraph of n vertices is equal to the number of ordered partitions
of a set of size n, that is:

Tn ¼
Xn�1

k¼0

n

k

� �
Tk; ð1Þ

where T0 � 1.

2.1. Update digraph

Let G ¼ ðV ;AÞ be a digraph and s an update schedule, we define
the label function labs : A! f€;�g in the following way:

8ðj; iÞ 2 A; labsðj; iÞ ¼
� if sðjÞP sðiÞ
€ if sðjÞ < sðiÞ:

�

An arc a 2 A such that labsðaÞ ¼ � is called a positive arc and an arc
a 2 A such that labsðaÞ ¼ € is called a negative arc. By labeling
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Fig. 1. A digraph G ¼ ðV ;AÞ labeled by the function labs where 8i 2 V ¼
f1; . . . ;4g; sðiÞ ¼ i.
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every arc a of A by labsðaÞ, we obtain a labeled digraph ðG; labsÞ
named update digraph (see Fig. 1). We denote

UðGÞ ¼ flab : AðGÞ ! f€;�gj ðG; labÞ is an update digraphg: ð2Þ
1 2

n+1 n+2

n

Fig. 2. Interaction graph G for the proof of Theorem 1.
2.2. Boolean network

A Boolean network N ¼ ðG; F; sÞ is defined by:

� A digraph G ¼ ðV ;AÞ with n vertices, named interaction
graph.

� A global activation function F ¼ ðf1; . . . ; fnÞ : f0;1gn !
f0;1gn, where the component functions fi : f0;1gn !
f0;1g are called local activation functions and satisfy
the following property:
ðj; iÞ 2 A() 9x 2 f0;1gn

; fiðxÞ – f iðxjÞ, where for all
x 2 f0;1gn

; xj 2 f0;1gn is defined by xj
j ¼ xj ¼ 1� xj and

xj
k ¼ xk for all k – j.

� An update schedule s : V ! ½½1;n�� of the vertices of G.

The iteration of the discrete network with an update schedule s is
given by:

xrþ1
i ¼ fi xl1

1 ; . . . ; x
lj
j ; . . . ; xln

n

� �
;

where lj ¼ r if sðiÞ 6 sðjÞ and lj ¼ r þ 1 if sðiÞ > sðjÞ. The exponent r
represents the time step.

This is equivalent to applying a function Fs : f0;1gn ! f0;1gn in
a parallel way, with FsðxÞ ¼ ðf s

1ðxÞ; . . . ; f s
nðxÞÞ defined by:

f s
i ðxÞ ¼ fiðgs

i;1ðxÞ; . . . ; gs
i;nðxÞÞ;

where the function gs
i;j is defined by gs

i;jðxÞ ¼ xj if sðiÞ 6 sðjÞ and
gs

i;jðxÞ ¼ f s
j ðxÞ if sðiÞ > sðjÞ. Thus, the function Fs corresponds to the

dynamical behavior of the network N. We will say that two net-
works N1 ¼ ðG; F; s1Þ and N2 ¼ ðG; F; s2Þ have the same dynamics if
Fs1 ¼ Fs2 .

Since f0;1gn is a finite set, we have two limit behaviors for the
iteration of a network:

� Fixed Point. We define a fixed point as x 2 f0;1gn such
that FsðxÞ ¼ x.

� Limit Cycle. We define a limit cycle of length p > 1 as the
sequence x0; . . . ; xp�1 such that xj 2 f0;1gn

; xj are pairwise
distinct and FsðxjÞ ¼ xjþ1, for all j ¼ 0; . . . ; p� 2 and
Fsðxp�1Þ ¼ x0.

Fixed points and limit cycles are called attractors of the network.
3. Different dynamics in Boolean networks

For a given Boolean network N ¼ ðG; F; sÞ, determining the exis-
tence of an update schedule s0 – s such that the network
N0 ¼ ðG; F; s0Þ has a different dynamics from that of N is, contrarily
to intuition, a difficult problem as stated in the following theorem.

Theorem 1. Let G be an interaction graph and F a global activation
function. The problem of knowing whether there exist update sched-
ules s0 – ssuch that Fs – Fs0 is NP-complete.
Proof. It is easy to see that the problem of knowing whether there
exist update schedules s0 – s such that Fs – Fs0 is NP. Indeed, for a
given update schedule s0 – s; x 2 f0;1gn and i 2 f1; . . . ;ng, where
jVðGÞj ¼ n, we can check in polynomial time that f s

i ðxÞ– f s0
i ðxÞ, i.e.

Fs – Fs0.
We present a polynomial reduction from the SAT problem. Let /

a conjunctive normal form (cnf) formula with variables x1; . . . ; xn in
f0;1g. We construct a Boolean network with interaction graph G,
as shown in Fig. 2, with nþ 2 nodes as follows. For each variable xi

there is a node i with local activation function fiðxÞ ¼ �xi. In addition,
there are two nodes nþ 1 and nþ 2 with local functions
fnþ1ðxÞ ¼ xnþ1 ^ /ðx1; . . . ; xnÞ and fnþ2ðxÞ ¼ xnþ1 for every

x 2 f0;1gnþ2. To prove the correctness of the reduction, let us
consider first a satisfiable formula /, with /ðaÞ ¼ 1;
a ¼ ða1; . . . ;anÞ 2 f0;1gn. Then, for s ¼ ðnþ 1Þðnþ 2Þð1;2; . . . ;nÞ
and s0 ¼ ðnþ 2Þðnþ 1Þð1;2; . . . ;nÞ; Fsða;1;0Þ ¼ ð�a;0;0Þ and
Fs0ða; 1; 0Þ ¼ ð�a; 0; 1Þ, hence Fs – Fs0. On the other hand, if / is
not satisfiable, that is for every x 2 f0;1gn;/ðxÞ ¼ 0, then
fnþ1ðxÞ ¼ xnþ1. Thus, for every update schedule s, Fsðx; 0; �Þ ¼
ð�x;0;0Þ and Fsðx;1; �Þ ¼ ð�x;1;0Þ for every x 2 f0;1gn and where
� 2 f0;1g. Therefore, for every update schedule s – s0; Fs ¼ Fs0. h

However, for some Boolean networks, with interaction graphs
having certain structural properties, it is possible to ensure the
existence of update schedules which yield different dynamical
behaviors, as shown in the following proposition.

Proposition 2. Let N ¼ ðG; F; sÞ a Boolean network such that
9i 2 VðGÞ;V�ðiÞ ¼ fjg and 9k 2 V�ðjÞ; k – j. Then, there exist update
schedules s1; s2 such that Fs1 – Fs2 .
Proof. Let i 2 VðGÞ;V�ðiÞ ¼ fjg. Hence, fiðxÞ ¼ xj or fiðxÞ ¼ xj. In both
cases, fiðxÞ – f iðxjÞ; 8x 2 f0;1gn where n ¼ jVðGÞj.

Besides, if 9k 2 V�ðjÞ with k – j, then 9y 2 f0;1gn; fjðyÞ ¼ yj,
since otherwise 8x 2 f0;1gn; fjðxÞ ¼ xj, which means V�ðjÞ ¼ fjg, a
contradiction. Let s1; s2 be update schedules such that s1ðjÞP
s1ðiÞ; s2ðjÞ < s2ðiÞ and 8k 2 V�ðjÞ; s1ðkÞP s1ðjÞ ^ s2ðkÞP s2ðjÞ. Thus,
f s1
i ðyÞ ¼ fiðyÞ and f s2

i ðyÞ ¼ fiðy1; . . . ; fjðyÞ; . . . ; ynÞ ¼ fiðyjÞ – f iðyÞ.
Therefore, Fs1 – Fs2 . h



Table 1
Number of equivalence classes vs. total number of update schedules for Example 1.

n 2n�1 Tn 2n�1=Tn

1 1 1 1
2 2 3 0.667
3 4 13 0.308
4 8 75 0.107
5 16 541 0.030
6 32 4683 0.007

..

. ..
. ..

. ..
.
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On the other hand, in [1], the authors studied the robustness of
the dynamical behavior of a Boolean network with respect to dif-
ferent update schedules and established the following result:

Theorem 3. Let N1 ¼ ðG; F; s1Þ and N2 ¼ ðG; F; s2Þ be two Boolean
networks that differ only in their update schedules s1 and s2

respectively. If ðG; labs1 Þ ¼ ðG; labs2 Þ, then N1 and N2 have the same
dynamics.

Using this Theorem, the authors naturally grouped the update
schedules yielding the same update digraph into equivalence clas-
ses defined as follows:

½s�G ¼ fs0 : ðG; labsÞ ¼ ðG; labs0 Þg: ð3Þ

Thus, there is a one-to-one correspondence between the elements
of UðGÞ in (2) and the equivalence classes defined in (3). Therefore,

jUðGÞj ¼ jf½s�G : s is an update schedule over VðGÞgj:

In other words, Theorem 3 says that jUðGÞj gives us the maximum
number of different dynamics that can be obtained by iterating a
Boolean network with the Tn deterministic update schedules, where
jVðGÞj ¼ n. In this context, some theoretical bounds and exact formu-
las have been established for jUðGÞj in particular families of digraphs
such as connected digraphs, complete digraphs (i.e., digraphs
G ¼ ðV ;AÞwhere A ¼ fðu;vÞ : u;v 2 V ^ u – vg), digraphs containing
a tournament as a subdigraph, etc. as well as the NP-completness of
the update digraph decision problem associated ([9,14]).

For example in [9] the authors proved that in the particular case
of complete digraphs the number of equivalence classes is Tn (the
maximum value for jUðGÞj), with exactly one update schedule in
each class, i.e. a complete digraph could possibly have Tn different
dynamics. However in applications the networks are rarely com-
plete digraphs, except for the n-switches often met in plant mor-
phogenesis ([19,20]). For digraph that are not complete the
number of equivalence classes is strictly smaller than Tn.

It is also possible that two nonequivalent update schedules, i.e.
belonging to distinct equivalence classes, yield the same dynamical
behavior. The following example exhibits families of networks
where all pairs of nonequivalent update schedules yield either
the same or different dynamical behaviors.

Example 1. Let G be the digraph, with jVðGÞj ¼ n as shown in
Fig. 3. F and ~F are defined by fiðxÞ ¼ ~f iðxÞ ¼ xn 8i ¼ 1; . . . ;n� 1 and
fnðxÞ ¼ xn and ~f nðxÞ ¼ xn for every x 2 f0;1gn. Hence, jUðGÞj ¼ 2n�1

and since f s
nðxÞ ¼ xn and ~f s

nðxÞ ¼ �xn – xn for every update schedule s
and x 2 f0;1gn, then Fs ¼ Fs0 and ~Fs – ~Fs0 for every pair ðs; s0Þ of
nonequivalent update schedules. Therefore, the dynamics of
N1 ¼ ðG; F; s1Þ and N2 ¼ ðG; F; s2Þ are the same, and that of
~N1 ¼ ðG; ~F; s1Þ and ~N2 ¼ ðG; ~F; s2Þ are different for every pair
ðs1; s2Þ of nonequivalent update schedules.

Note that from Proposition 2, if G is a cycle, then for any global
activation function F, all update schedule classes yield different
dynamics.
21 n−1

n

Fig. 3. Interaction graph G for Example 1. Note that N ¼ ðG; F; sÞ gives the same
dynamic whatever the update schedule s, while eN ¼ ðG; ~F; sÞ has jUðGÞj ¼ 2n�1

different dynamics, one for each equivalence class.
At this point, we can compare the maximum number of differ-
ent dynamics with the total number of update schedules for the
networks of Example 1, i.e., to compare jUðGÞj ¼ 2n�1 with Tn

respectively. The values are summarized in Table 1.
Such cases help to understand more intuitively the computa-

tional savings that can be achieved if one wants to know the full
spectrum of all the dynamics associated with a given network.

From previous results, there is not an easy way, in the general
case, for determining the different dynamics of a given Boolean
network when only the deterministic update schedule is changed.
A straightforward approach for doing this is, first, to determine the
set of update schedule equivalence classes, and then to compute
the dynamical behavior of each class.

4. Enumerating update digraphs

In this section, we exhibit an algorithm for enumerating a rep-
resentative update schedule, with the smallest number of blocks,
for all the equivalence classes. This will then allow to determine
the different dynamics of a Boolean network when the determinis-
tic update schedule is varied.

Definition 4. Let G ¼ ðV ;AÞ be a digraph and C;D # V . We define
the subdigraph of G associated to C and D by GðC;DÞ ¼ ðC [ D;AðGÞ\
ððC [ DÞ � ðC [ DÞÞ. Also we define labðC;DÞ : AðGðC;DÞÞ ! f�;€g by:

labðC;DÞðu; vÞ ¼
€; u 2 C ^ v 2 D;

�; otherwise

�

Definition 5. Let G be a digraph, s ¼ ðj 2 B1Þðj 2 B2Þ . . . ðj 2 BnbðsÞÞ a
partial update schedule over G and X # VðGÞ n

SnbðsÞ
i¼1 Bi. We define

the operation � as follows:

s � X ¼ ðj 2 B1Þðj 2 B2Þ . . . ðj 2 BnbðsÞÞðj 2 XÞ:

In addition, we define

se � X ¼ ðj 2 XÞ;

where se is an element named empty update schedule with
nbðseÞ ¼ 0 and B0 ¼ ;.

The following is an algorithm to determine a representative up-
date schedule for each one of the equivalence classes of a given
digraph.

Algorithm 1. EqClassðGÞ

Input: G ¼ ðV ;AÞ a digraph
Output: UD, a set of representative update schedules, one for

each equivalence class associated to G
begin
UD  DigraphUD(se; ;;V);

end
Lemma 6. Let G be a digraph with jVðGÞj ¼ n; s ¼ ðBiÞki¼1 an update
schedule for G; k 2 ½½1;n��, and UD the output of the algorithm
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EqClassðGÞ. Then, s 2 UD() ðs ¼ sp _ MoveTestðBi;Bi�1Þ ¼ 0;8i 2
½½2; k��Þ.
Proof. Let G be a digraph with jVðGÞj ¼ n; s ¼ ðBiÞki¼1 an update
schedule for G; k 2 ½½1;n��, and UD the output of the algorithm
EqClassðGÞ.
)Þ Let s 2 UD. If k ¼ nbðsÞ ¼ 1, then clearly s ¼ sp and the

statement is true. If k > 1, then, by definition of DigraphUD,
MoveTestðBk�2;Bk�1Þ ¼ MoveTestðBk�1;BkÞ ¼ 0 (possibly Bk�2 ¼
;). This also implies that MoveTestðBk�3;Bk�2Þ ¼ 0, because
otherwise s would not be invoked in the recursive process of
algorithm. Thus, applying recursively this argument, we have that
MoveTestðBi;Bi�1Þ ¼ 0;8i 2 ½½2; k��.
(Þ If s ¼ sp, then the result is direct. If k P 2 and

MoveTestðBi;Bi�1Þ ¼ 0;8i 2 ½½2; k��, then s is invoked in the recur-
sion and it satisfies the conditions MoveTestðU ¼ Bk�2;

A ¼ Bk�1Þ ¼ MoveTestðBk�1;B ¼ BkÞ ¼ 0. Therefore, s is added to
UD. h

Algorithm 2 DigraphUDðs;A; BÞ

Input: A; B subsets of vertices of a digraph G, and s a partial
update schedule of a subdigraph of G

Output: UD, a set of partial update schedules for G
begin
UD ;;
U  BnbðsÞ;
if U ¼ A ¼ ;then
UD ¼ UD [ fsB ¼ ðj 2 BÞg;
for allA0 	 B such that A0 – ; with decreasing sizedo

B0 ¼ B� A0;
UD ¼ UD [ DigraphUDðse;A0;B0Þ;

end
else

if MoveTestðU;AÞ ¼ 0 then
if MoveTestðA;BÞ ¼ 0 then
UD ¼ UD [ fðs � AÞ � Bg;

if jBj > 1 then
for allA1 	 B such that A1 – ;with decreasing size do

B1 ¼ B� A1;
UD ¼ UD [ DigraphUDðs � A;A1;B1Þ;

end
end

end
end
return (UD);

end
Lemma 7. Let G be a digraph and UD the output of algorithm
EqClassðGÞ. Then, 8s; s0 2 UD; s – s0 : ½s�G – ½s0�G.
5

7
4

321
6

Fig. 4. The subdigraph of the reduced Mendoza and Alvarez-Buylla network
composed of two connected components: G (left side) and F (right side). The
vertices 1,. . .,7 represent the following genes of the plant A. thaliana involved in its
floral morphogenesis: AGAMOUS (AG), APETALATA 1 (AP1), TERMINAL FLOWER 1
(TF1), EMBRYONIC FLOWER 1 (EMF1), APETALATA 3 (AP3), PISTILLATA (PI) and BURST
FORMING UNIT (BFU), respectively.
Proof. Let G be a digraph with jVðGÞj ¼ n and let UD the output of
algorithm EqClassðGÞ. Let s; s0 2 UD; s – s0 with s ¼ ðBiÞki¼1 and
s0 ¼ ðB0iÞ

t
i¼1 for some k; t 2 ½½1;n��. By Lemma 6, we have

that s ¼ sp or MoveTestðBi;Bi�1Þ ¼ 0;8i 2 ½½2; k�� and s0 ¼ sp or
MoveTestðB0i;B

0
i�1Þ ¼ 0;8i 2 ½½2; t��.

Let i ¼minfj : Bj – B0jg. Let us suppose w.l.o.g. that 9w 2 Bi n B0i.
Then, B0j ¼ Bj;8j < i. Hence, w 2 Bp, for some p > i. Since
MoveTestðBp�1;BpÞ ¼ 0, then 9y 2 Bp�1;v 2 Bp such that the arc
ðy; vÞ is negative. In addition, there exist a path from w to v in G
(possibly v ¼ w) because otherwise there exist H ¼ fwg[
fv 2 Bp : there is a path from w to vg# Bp such that ðGðBp�1 ;BpÞ;

labðBp�1 ;BpÞÞ ¼ ðGðBp�1[H;Bp�HÞ; labðBp�1[H;Bp�HÞÞ, therefore MoveTest
ðBp�1;BpÞ ¼ 1 which is a contradiction. Since the arc ðy;vÞ is
negative with respect to s, this necessarily implies that y 2 B0r for
some r < i, i.e. B0r – Br , a contradiction because B0j ¼ Bj;8j < i, in
particular for j ¼ r. h

Algorithm 3: MoveTestðC;DÞ

Input: C;D subsets of vertices of a digraph G
bf Output: An index 1 if it is possible to move nodes from D to

C without changing the update digraph induced by C [ D,
an index 0 otherwise

begin
if C ¼ ;then

return (0);
else

if 9H # D such that
ðGðC;DÞ; labðC;DÞÞ ¼ ðGðC[H;D�HÞ; labðC[H;D�HÞÞ

then
return (1);

else
return (0);

end
end

end
Lemma 8. Let G be a digraph with jVðGÞj ¼ n; s ¼ ðBiÞki¼1 an update
schedule for G; k 2 ½½1;n��, and UD the output of the algorithm
EqClassðGÞ. Then, s R UD() 9s0 2 UD; s0 – s, such that s 2 ½s0�G.
Proof. Let G be a digraph with jVðGÞj ¼ n; s ¼ ðBiÞki¼1 an update
schedule for G; k 2 ½½1;n��, and UD the output of the algorithm
EqClassðGÞ.
)Þ If s R UD, then by Lemma 6, 9r ¼min

fi : MoveTestðBi�1;BiÞ ¼ 1g. Hence, we consider Hr the biggest
subset of Br such that ðGðBr�1 ;BrÞ; labðBr�1 ;BrÞÞ ¼ ðGðBr�1[Hr ;Br�HrÞ;lab

ðBr�1[Hr ;Br�HrÞÞ. Thus, there exist an update schedule s1 ¼ ðB1
i Þ

k
i¼1 – s

where B1
j ¼ Bj;8j 2 ½½1; k�� n fr � 1; rg; B1

r�1 ¼ Br�1 [ Hr and

B1
r ¼ Br � Hr (it is possible that B1

r ¼ ; and therefore nbðs1Þ < k) such
that ðG; labs1 Þ ¼ ðG; labsÞ. Now, considering s1, if there exist

r ¼minfi : MoveTestðB1
i�1;B

1
i Þ ¼ 1g, then we construct s2 depending

of s1, i.e., we consider Hr the biggest subset of B1
r such that

ðGðB1
r�1;B

1
r Þ
; labðB1

r�1 ;B
1
r Þ
Þ ¼ ðGðB1

r�1[Hr ;B
1
r�HrÞ; labðB1

r�1[Hr ;B
1
r�HrÞÞ. Thus, there

exist an update schedule s2 ¼ ðB2
i Þ

nbðs1Þ
i¼1 R fs; s1g where

B2
j ¼ B1

j ;8j 2 ½½1;nbðs1Þ�� n fr � 1; rg; B2
r�1 ¼ B1

r�1 [ Hr and B2
r ¼ B1

r�



Table 2
EqClass applied to the left side digraph in Fig. 4. The respective equivalence classes and update digraphs associated to each representative update schedule of UD are shown in
Table 4 and Fig. 5 respectively.

s A B UD

se ; f5;6;7g fð5;6;7Þg [ DigraphUDðse; f5;6g; f7gÞ
se f5;6g f7g fð5;6;7Þ; ð5;6Þð7Þg [ DigraphUDðse; f5;7g; f6gÞ
se f5;7g f6g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þg [ DigraphUDðse; f6;7g; f5gÞ
se f6;7g f5g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þg [ DigraphUDðse; f5g; f6;7gÞ
se f5g f6;7g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þg [ DigraphUDðse � f5g; f6g; f7gÞ
(5) f6g f7g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þg [ DigraphUDðse � f5g; f7g; f6gÞ
(5) f7g f6g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þg [ DigraphUDðse; f6g; f5;7gÞ
se f6g f5;7g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þg [ DigraphUDðse � f6g; f5g; f7gÞ
(6) f5g f7g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þg [ DigraphUDðse � f6g; f7g; f5gÞ
(6) f7g f5g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þ; ð6Þð7Þð5Þg [ DigraphUDðse; f7g; f5;6gÞ
se f7g f5;6g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þ; ð6Þð7Þð5Þ; ð7Þð5;6Þg [ DigraphUDðse � f7g; f5g; f6gÞ
(7) f5g f6g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þ; ð6Þð7Þð5Þ; ð7Þð5;6Þg [ DigraphUDðse � f7g; f6g; f5gÞ
(7) f6g f5g fð5;6;7Þ; ð5;6Þð7Þ; ð5;7Þð6Þ; ð6;7Þð5Þ; ð5Þð6;7Þ; ð5Þð7Þð6Þ; ð6Þð5;7Þ; ð6Þð7Þð5Þ; ð7Þð5;6Þg
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Hr (it is possible that B2
r ¼ ; and therefore nbðs2Þ < nbðs1Þ) such that

ðG; labs2 Þ ¼ ðG; labs1 Þ. If such r does notexist, then Lemma6 implies that
s1 2 UD and since ðG; labs1 Þ ¼ ðG; labsÞ, then s 2 ½s1�G. Applying recur-
sively these arguments to s2; s3 and so on and since each block has a
finite number of nodes, we deduce that there exist l P 1 such that
sl 2 UD; sl – s and s 2 ½sl�G.
(Þ Let s0 2 UD; s0 – s, such that s 2 ½s0�G, i.e. ½s�G ¼ ½s0�G. Suppose
on the contrary that s 2 UD, then due to Lemma 7, we conclude that
½s�G – ½s0�G, a contradiction. h
Theorem 9. Let G be a digraph. Then, the output of algorithm
EqClassðGÞ is UD ¼ fs1; . . . ; skg where f½si�Gj1 6 i 6 kg is a partition
of the set of update schedules of G and such that
81 6 i 6 k;8s 2 ½si�G;nbðsÞP nbðsiÞ.
Proof. The fact that f½si�Gj1 6 i 6 kg is a partition of the set of
update schedules of G is directly obtained from Lemmas 6–8. On
the other hand, Let us suppose that there exist si ¼ ðBi

jÞ
l
j¼1 2 UD

and s ¼ ðBjÞkj¼1 2 ½si�G such that nbðsÞ ¼ k < nbðsiÞ ¼ l. From proof
of Lemma 6, there exist w 2 Bp n Bi

p with p ¼minfj : Bj – Bi
jg, and

applying the same arguments we obtain a contradiction. h

Note that the algorithm MoveTest is polynomial in the size
of C [ D. Indeed, if for any u 2 D we denote DðuÞ ¼ fv 2 D : there
exist a path from uto vg [ fug the set of vertices reached from u
in D, then the condition MoveTestðC;DÞ ¼ 1 is equivalent to
9u 2 D;8y 2 C;8v 2 DðuÞ; ðy;vÞ R AðGÞ and this last condition
can be easily tested in polynomial time. On the other hand,
the number of recursive invocations made by EqClass depends
on jUðGÞj (because jUDj ¼ jUðGÞj) and on the minimum number of
blocks of update schedules in each equivalence class. Thus,
EqClass is efficient in digraphs with a large number of equiva-
lence classes and in digraphs with representative schedules
having a small number of blocks (as in Example 1). We also
observe that DigraphUD is a base algorithm that obviously can
Table 3
For the component G (F) of 4 (3) nodes there are 75 (13) ways to iterate the network
(update schedule) that can be grouped into 20 (9) equivalence classes (update
digraphs), each one of them with a representative update schedule obtained in the
output UD of EqClass algorithm. Then to have the full spectrum of the dynamical
behavior of the network, we need to evaluate a 27 (69) percent of all update schedules
for G (F) which gives us 6 (9) different dynamics.

X n ¼ jVðXÞj Tn jUDj jUDj=Tn jDðXÞj

G 4 75 20 0.27 6
F 3 13 9 0.69 9
be optimized (as a future work), for example, with properties
allowing to avoid the partitioning in the latest blocks of a given
update schedule.

An example of the steps of the algorithm EqClass applied to
the left side digraph in Fig. 4 is given in Table 2:
5. Running EqClass in A. Thaliana

In this section, we use the EqClass algorithm in a real genetic
regulation network of the floral morphogenesis in the plant A. tha-
liana with the aim to discuss the ideas of the previous sections and
thus show the gain provided by our algorithm. We will consider
the reduced Mendoza and Alvarez-Buylla network which has two
non-trivial strongly connected symmetric components and whose
asymptotic dynamics has the same attractors as the original net-
work (see [21,16] for more details). Thus, we will focus on work
with the subdigraphs G and F depicted in Fig. 4, where the states
of the network at time t; xiðtÞ 2 f0;1g; i ¼ 1; . . . ;7 are defined as
follows:

x1ðtÞ ¼ Hð�2x3ðt � 1Þ � 2x2ðt � 1Þ � 1Þ; x5ðtÞ ¼ x7ðt � 1Þ;
x2ðtÞ ¼ Hð�2x4ðt � 1Þ � 2x1ðt � 1Þ � 2Þ; x6ðtÞ ¼ x7ðt � 1Þ;
x3ðtÞ ¼ x4ðt � 1Þ; x7ðtÞ ¼ Hðx5ðt � 1Þ þ x6ðt � 1Þ � 1Þ;
x4ðtÞ ¼ x4ðt � 1Þ; HðxðtÞÞ ¼ 1 if xðtÞ > 0 and
HðxðtÞÞ ¼ 0 if xðtÞ 6 0:

Components G and F are digraphs whose attractors have been en-
tirely determined in [16] but not all their different dynamics, which
a priori can be numerous. Our algorithm evaluates in an efficient
way only part of the update schedules (unless the digraph is com-
plete) in order to determine the full spectrum of the different
dynamics associated to components G and F.

Let N ¼ ðG; F; sÞ be a Boolean network. We define DðGÞ as the
set of all the different dynamics of N. The result of the execution
of EqClass over the components G and F are summarized in
Table 3.

In this Table we observe that the reduction factor is 0.27 for
component G and 0.69 for component F. This means that in or-
der to determine the truly different dynamics one needs to com-
pute the dynamics of only 27% of all the possible update
schedules for G (69% for F). When this computation is performed,
we note that the number of truly different dynamics is reduced
from 20 to 6 for G, but is not further reduced for F, meaning that
for F all the equivalence classes have different dynamics. On the
other hand, from the above computational analysis for G and F
components, it was also possible to observe that in their asymp-
totic behaviors, only 2 of the 6 different dynamics in G have a
limit cycle while this kind of attractor exists in only 1 of the 9



Table 4
The different equivalence classes associated to F.

½s1�F ½s2�F ½s3�F ½s4�F ½s5�F ½s6�F ½s7�F ½s8�F ½s9�F
(5,6,7) (6)(5,7) (5,7)(6) (6,7)(5) (6)(7)(5) (7)(5,6) (5)(6,7) (5,6)(7) (5)(7)(6)

(7)(5)(6) (5)(6)(7)
(7)(6)(5) (6)(5)(7)

(a)

5

7

+

+

+

+

6

(b)

5

7

+

+

+
6

(c)

5

7

+

+ +

6

(d)

5

7
+ +

+
6

(e)

5

7
+

+
6

(f)

5

7
+ +

6

(g)

5

7
+

+ +
6

(h)

5

7

+ +
6

(i)

5

7

+

+

6

Fig. 5. The update digraphs F1,. . .,F9 associated to the equivalence classes of s1,. . .,s9

are showed in the sub-figures aÞ,. . .,iÞ respectively.

Table 5
Dynamics associated to F1,. . .,F5.

State Sched. 1 Sched. 2 Sched. 3 Sched. 4 Sched. 5
s1ð5Þ ¼ 1 s2ð5Þ ¼ 2 s3ð5Þ ¼ 1 s4ð5Þ ¼ 2 s5ð5Þ ¼ 3
s1ð6Þ ¼ 1 s2ð6Þ ¼ 1 s3ð6Þ ¼ 2 s4ð6Þ ¼ 1 s5ð6Þ ¼ 1
s1ð7Þ ¼ 1 s2ð7Þ ¼ 2 s3ð7Þ ¼ 1 s4ð7Þ ¼ 1 s5ð7Þ ¼ 2

000 000 000 000 000 000
001 110 110 100 010 010
010 000 000 000 000 000
011 110 110 100 010 010
100 000 000 000 000 000
101 110 111 100 010 111
110 001 000 011 101 000
111 111 111 111 111 111

Table 6
Dynamics associated to F6,. . .,F9.

State Sched. 6 Sched. 7 Sched. 8 Sched. 9
s6ð5Þ ¼ 2 s7ð5Þ ¼ 1 s8ð5Þ ¼ 1 s9ð5Þ ¼ 1
s6ð6Þ ¼ 2 s7ð6Þ ¼ 2 s8ð6Þ ¼ 1 s9ð6Þ ¼ 3
s6ð7Þ ¼ 1 s7ð7Þ ¼ 2 s8ð7Þ ¼ 2 s9ð7Þ ¼ 2

000 000 000 000 000
001 000 110 111 100
010 000 000 000 000
011 000 111 111 111
100 000 000 000 000
101 000 110 111 100
110 111 000 000 000
111 111 111 111 111
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different dynamics in F. In all these cases, the limit cycles are of
length 2 (which can be deduced from results in [22,16]). This is
another way to validate the fact that most of the dynamics of
the original network have only fixed points (which represents
the phenotypes of the flower) as was showed in [16]. The equiv-
alence classes, update digraphs and dynamical behavior are
detailed, for a didactical purpose, only for F in Table 4, Fig. 5
and Tables 5 and 6, respectively.
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