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1. Introduction

Coherent risk measures and their relation to robust optimiza-
tion have received significant attention in the literature (Artzner,
Delbaen, Eber, & Heath, 1999; Bertsimas & Brown, 2009; Natarajan,
Pachamanova, & Sim, 2009; Shapiro, Dentcheva, & Ruszczynski, 2009;
Ben-Tal, Ghaoui, & Nemirovski, 2009; Wichter & Mazzoni, 2013). It
is known that every coherent risk measure is associated with a pre-
cisely determined convex uncertainty set with properties that are
strongly tied to the axioms characterizing coherent risk measures
(e.g. Bertsimas and Brown (2009); Natarajan et al. (2009)). Similar
results have also been given for a special class of coherent risk mea-
sures known as distortion risk measures, which include the widely
used Conditional Value-at-Risk (Bertsimas & Brown, 2009; Pichler &
Shapiro, 2013; Shapiro, 2013). All these characterizations are based
on the restrictions imposed by the coherence or distortion axioms on
the actions of the coherent risk measure over all possible random vari-
ables. However, in many settings, the random variables considered are
either an affine or linear function of a, potentially correlated, vector
of random parameters. A classical example is portfolio optimization
(see for example Markowitz (1952); Konno and Yamazaki (1991);
Black and Litterman (1992); Cvitani¢ and Karatzas (1992); Krokhmal,
Palmquist, and Uryasev (2002); Zymler, Rustem, and Kuhn (2011);
Lim, Shanthikumar, and Vahn (2011); Kawas and Thiele (2011); Fer-
tis, Baes, and Liithi (2012); Kolm, Tiit{inc{i, and Fabozzi (2014)) where

* Corresponding author. Tel.: +1 617 324 1204.
E-mail addresses: glagos@gatech.edu (G. Lagos), daespino@dii.uchile.cl
(D. Espinoza), eduardo.moreno@uai.cl (E. Moreno), jvielma@mit.edu (J. P. Vielma).

http://dx.doi.org/10.1016/j.ejor.2014.09.024
0377-2217/© 2014 Elsevier B.V. All rights reserved.

the random return of a portfolio is usually modeled as a weighted
linear combination of the random returns of individual assets (with
weights equal to the fraction invested in a given asset) plus a possibly
null constant representing investment in a riskless asset. In this paper
we show that imposing the coherence and distortion axioms only on
random variables that are a linear, or affine linear function of a vector
of random variables allows the inclusion of uncertainty sets that are
deemed invalid by the classical characterizations. In particular, we
show that in the finite probability case these additional sets at least
include certain expansions of the classical sets. We also show that
such expansions are in turn related to the common practice of taking
the convex combination of a risk measure with the expected value.
More specifically, we show that risk measures associated to these ex-
pansions are affine combinations of a risk measure with the expected
value.

Finally we present computational experiments that suggest that
the risk measures associated with these uncertainty sets can help
mitigate estimation errors of the Conditional Value-at-Risk.

The rest of this paper is organized as follows. In Section 2 we give
some notation and background on risk measures and robust optimiza-
tion. In Section 3 we show the existence of uncertainty sets that do
not fall in the classical characterizations, but do yield distortion risk
measures on the subspace of random variables that are either affine
or linear functions of a fixed random vector. In Section 4 we show that
the risk measures associated to these uncertainty sets are affine com-
binations of a risk measure with the expected value. Then, in Section 5
we present some results of computational experiments showing that
these uncertainty sets could be useful to mitigate estimation errors.
Finally, in Section 6 we present some final remarks.
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2. Notation and background on risk measure and robust
optimization

2.1. Notation

Throughout the paper we will use bold letters to denote column
vectors, and we will use an apostrophe to denote the transposition
operation. Thus, ¥ € R? is a column vector and ¥’ its transpose. We
also note e as the vector with a 1 in every component and ey := %e,
For a given set S € R" we denote by aff(S), conv(S) and conv(S) its
affine, convex and closed convex hull respectively. We also let lin(S)
be the linear space spanned by S and ri(S) the relative interior of S.
For a given convex set C we denote by ext(C) the set of its extreme
points. To denote index sets, we use [m] :={1,..., mj.

2.2. Coherent risk measures

Let (2, 7, P) be a probability space and L; (2, 7, P) be the set of
integrable random variables that are an outcome of the uncertain
parameter in 2. We use a tilde to identify random variables as in
g € L](Q,]‘—,P).

Definition 2.1. Afunction p : L{(R2, 7, P) — Risacoherent risk mea-
sure if it satisfies the following properties.

(C1) Convexity: p(tg +(1A -t)&) <tpE1)+ A -0pE) for all
g],gz el (Q,}—, ]P) and t € [O, 1]

(C2) Positive homogeneity: p(tg) = tp(g) for all & € L1 (2, 7, P) and
t>0.

(C3) Translation equivariance:
L1(2, F,P)and t € R.

(C4) Monotonicity: p(g1) < p(g,)forallg;, &, € L1 (2, F, P) such that
&1 <&as.

pt+8=t+p@E for all ge

The following theorem gives another characterization of coherent
risk measures (Shapiro et al., 2009, Theorem 6.4).

Theorem 2.2. Let

Ae {feLoo(Q,}‘,]P) : /f(a))d]P(a)):l} and (1a)
Q

A, = {feLoo(Q,}‘,]P’) : /f(a))dIP(w):l,f(w)an.s.}. (1b)
Q

Then a function p : L1 (2, F,P) — R satisfies (C1)-(C3) if and only if
there exists 7 < A such that

p(8) = sup / E)f (@)dP(). 2)
feg JQ

The function additionally satisfies (C4) if and only if 7 € A.. Finally, if
p satisfies (C1)-(C3), then it is additionally continuous. In that case, we
have that 7 is convex and weakly™ compact.

A relation between risk measures and robust uncertainty sets
emerges when we focus on random variables that are affine or lin-
ear functions of a fixed d-dimensional random vector i € L‘lj (K, F,P)
(i.e.u; € L1 (2, F, P) for each i € [d]). For instance # could be the ran-
dom returns on d assets and we may be interested in analyzing ran-
dom portfolio returns of the form gx(1i(w)) := Zfl:] x;U;(w) where
x < R? indicates the fractions invested in each asset (i.e. x [0, 1]¢
and Zle x; = 1). In general, this corresponds to restricting attention
to the subspaces of L1 (€2, F, P) given by

V(1) := {§ € Li(Q, F,P) : (%, X0) € R? x R such that g(w)
= 8y (@) :=X¥1U(w) + x0} and

Vo () 1= {§ € L1(Q, F,P) : 3x € RY such that §(w) = & (w)
= Xu(w)].

From now on we assume that the random vector u € L‘f (2, F,P)is
fixed and we simplify the notation to V and V), to which we colloqui-
ally refer to as the spaces of affine and linear random variables.

An advantage of restricting our attention to V or to V), is that the
effect of a coherent risk measure on such random variables can be
interpreted using the language of robust optimization as follows. Let
p be a risk measure satisfying (C1)-(C3) and let 7 € A be a convex
and weakly* compact set satisfying (2). Then, for any gxx, € V we
have

P @exe) = SUP / (¥Ti(@) + %0) f(@)dP(@) = %0 + sup ¥u,  (3)
feg JQ ueld (p)

where
upp) = {/Qﬁ(w)f(a))d]?(a)) fe j} c RY

We have that ¢/(p) is the image of convex and weakly* compact set
J under M : Lo(Q, F, P) — RY given by M;(f) := [, thi(w)f (@)dP(w).
Because u; € L1 (2, F, P) we have that M is linear and weakly* contin-
uous and hence U(p) is a compact and convex set satisfying U/ (p) €
aff(supp()), where supp (i) is the support of . If p additionally sat-
isfies (C4) then 7 < A, and we have that ¢/(p) € conv(supp(@)). In
the robust optimization literature this set ¢/(p) is usually denoted
the robust uncertainty set and the following well known theorem
(e.g. Theorem 4 of Natarajan et al. (2009)) states that its existence
essentially characterizes coherent risk measures over V.

Theorem 2.3. p : V — Rsatisfies properties (C1)-(C3) of Definition 2.1

over V if and only if there exists a closed convex set U C aff(supp(it))

such that

0 @xx,) = Xo + SUpX'u (4)
ueld

for every gy x, € V. In such case we have that the set U satisfying (4) is

unique and equal to

Up) = {ueRd C XU < pE) VerR{”}. (5)

Furthermore, p additionally satisfies property (C4) if and only if U/ (p) C
conv(supp(@)).

Proof. For the forward implication of the first equivalence note that
because p is a real valued function that is convex and positive ho-
mogeneous over Vy C V, we have that p (1) is a continuous sub-
linear function of x. Then p(¥'ll) = SUPycy(p) XUt for the closed con-
vex set U(p) defined in (5) (Theorem C-3.1.1 of Hiriart-Urruty and
Lemaréchal (2001)). Now, let uy € R? and L € RY be a linear sub-
space such that aff(supp(i)) = L + ug. If x € L+ then X'l = X'ug as.
and hence p (') = ¥'uy. Then, by (5) we have that

u@)g{ueRd:xufxm Vxeﬁ}
= {u eRY : Xu=2xup VxeLi}
= L+ ugy = aff(supp@)).

The implication then follows from the translation equivariance prop-
erty. The reverse implication is straightforward.

For the forward implication of the second equivalence
note that (p) < conv(supp(#)) is equivalent to Sup,cy(p) X't <
SUPyesupp(p) XU for all X. If supycqypp@) ¥t = oo this last inequality
holds automatically. If not, by translation equivariance and posi-
tive homogeneity gf © we have p(SUDycsupp@i) X' U) = SUPycsupp) X U-
Then, because of X't < sup,,cqypp) X' # and monotonicity of p we have

sup Xu.

sup x’u) =
uesupp (#)

sup Xu=p@Eu) < p(
uesupp (#)

ueld (p)

For the reverse implication note that if #/(p) < conv(supp(u))
and X'U(w) + xg < 0a.s. then p(X'U + xg) = Xg + SUPycri(p) XU < X0 +
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SUPyesupp@) ¥ U < 0. Together with sub-additivity of o this im-
plies that if Zxxy <8yy, then p@Exx,) < P Ex-yxo-yo) + P Eyy,) <
P Gyy,)- O

Note that in the proof of Theorem 2.3 necessity of U/(p) <
conv(supp(i)) was because of dominance between a constant
(SUPyesupp@) ¥'1) and a linear (x'tf) random variable. In Section 4 we
will see that this condition can sometimes be eliminated when we
only consider linear random variables (i.e. if we restrict ourselves to
Vo)-

Remark 2.1. It is also interesting to note the difference between
the characterization of coherent risk measures over Ly (2, F, P) given
by Theorem 2.2 and the characterization of coherent risk mea-
sures over subspace V of Ly (2, 7, P) given by Theorem 2.3. While
any closed convex set 7 € A, induces a convex uncertainty set
UT) = {[qli()f (@)dP(w) : f € J} < conv(supp(i)), the converse
does not always hold. For instance, if we let & be uniformly dis-
tributed on a compact convex set C and u® be an extreme point of
C, we have that ¢/ = {u%} is a convex uncertainty set that will induce
a coherent risk measure over V through (4). However, there is no
f e Ay such that [, i(w)f (w)dP(w) = P and hence by Theorem 2.2
and (3) there cannot be a coherent risk measure over L (2, 7, P) that
coincides with this measure in V. Therefore the set of coherent risk
measures over V is larger than those over L; (€2, F, P). Note that, if we
restrict ourselves to finite probability distributions, it is not too hard
to prove that this difference vanishes. However, in Section 3, we show
that this difference no longer vanishes for the so-called distortion risk
measures.

2.3. Distortion risk measures

Definition 2.4. A coherent risk measure p : L1 (2, 7, P) — Ris a dis-
tortion or spectral risk measure if it satisfies the following additional
properties.

(D1) Comonotonicity: p(g; + &) = p(€1) + p (&) for all g1, 8, such
that (g1 (w1) — g1 (@2)) (&2(w1) —&2(w2)) 20, Vw1, w; € Q.

(D2) Law invariance: p(g;) = p(g>) for all g;, g, that have the same
distribution.

Example 2.1. One of the most well known distortion risk mea-
sures is the Conditional Value-at-Risk which is given by CVaRg(g) :=

infiex {¢+ JEI@ - 0*1]).

While some characterizations of distortion risk measures are given
for more general probability distributions (e.g. see Shapiro 2013 and
Pichler & Shapiro, 2013), we now concentrate on the uniform prob-
ability distribution with finite support. Results in this section can be
found in, or are direct corollaries of results in Bertsimas and Brown
(2009).

For uniform discrete distributions we let supp(P)={w;:ie
[N]} € @ for which P({w;}) = } for all i € [N]. In this setting we as-
sume 2 = {w; : i € [N]} and that F is the o -algebra of all subsets of
Q. Furthermore, under these assumptions sets A and A, defined in
(1) become

N
AN = {qeRN:Zqizl} and

i=1

N
AN = {qeRN:Zqizl, gi>0 Vie[N]}.
i=1
With this notation, every random variable g e L (2, F, P) is repre-
sentable by means of a vector g € RN where g; := g(w;) for alli € [N].
Indeed, for finite probability spaces it is somewhat meaningless to
consider Ly (€2, 7, P) as all L,(2, 7, P) are trivially equal to space of
functions from 2 to R. However, we continue using this notation to

have a consistent way of distinguishing risk measures that are defined
over arbitrary functions of €2 from those that are only defined over V
or V.

Theorem 2.5. IfPPis afinite uniform distribution over Q@ = {w; : i € [N]},
p satisfies (C1)-(C3),(D1)-(D2)over L1 (2, F, P)ifand only if there exists
q € AN such that

N
pE) = glsasﬁgq(,(f)gi, (6)

where Sy is the group of permutations of N elements. Furthermore, in this
representation we can additionally choose q AN = {qe AN :q; >
... > qn}. Finally, p further satisfies (C4) over L (2, F,P) if and only
if q additionally belongs to AY or AN :={q e AN :qy > 0}. In both
cases we have that

U(p) = Mg (&) := conv ({Xqug@ui 1o € SN}) (7)

o1
where ui = 1i(w;) for each i € [N].

For notational convenience we again drop the dependence of I1q
onti.

Example 2.2. Let § € [0, 1] be such that §N € Z,. Then U(CVaRy) =
th (2) where

j<ON

1
h(S = SN .
otherwise

7 0 (8)
3. Distortion risk measures for uniform, discrete random
variables in V and V,

In this section we will prove that, even in the case of P being a finite
uniform distribution, there exists distortion risk measures p : V — R
that are not induced by any distortion risk measure p’ : L1 (2, F, P) —
R. For this, we will need some previous technical lemmas.

Lemma 3.1. If 0 € ri (conv (supp (u))) then for any V€ Vo, V> Oa.s.
impliesv=0a.s.

Proof. Since V € V,, then 3x € RY such that V(w) = ¥i(w), Yo € Q.
From this, V > Oa.s. implies that ¥1i(w) > 0, Yo € supp (). If x =0
the result is direct. By contradiction, assume that there exists u,
supp (i) such that ¥'u, > 0. Now, since 0 € ri (conv (supp (it))), there
exists U a relatively open neighborhood of 0 within conv (supp (ii)).
However, because u, ¢ aff (conv (supp (i1))), there exists & > 0 such
that su,, —&u, € U C conv (supp (). Then, there must exists u; €
supp (i) such that 'u; has the same sign as &' (—eu,) < 0 which con-
tradicts V> 0a.ss.. O

Lemma 3.1 implies that if 0  ri (conv (supp (u))), then, condition
(C4) is moot for V,.

We then get the following refinement of Theorems 2.3 and 2.5 for
linear random variables.

Corollary 3.2. If0 « ri (conv (supp (i))), then

1. p:Vy — R satisfies (C1)-(C4) over Vg if and only if U(p) C
aff(supp(®)) and p(x) = SUPy(p) X'

2. Ifu(p)=Tlq forq e AN and PEx) = SUPycri(p) X', then p satisfies
(C1)-(C4), (D1)-(D2) over V,.

Proof. For 1 note that the first part of the proof of Theorem 2.3 shows
that p : V — R satisfies properties (C1)-(C3) over Vy if and only
if U(p) < aff(supp(@)) and p(gx) = SUPycy(p) ¥ . To obtain the first
equivalence it only remains to show that if /(o) < aff(supp@@)), then
p satisfies property (C4) over V. For this let §; := xi'Ti(w) fori € {1, 2}
be such that §; (w) < & (w)a.s. Then (x2 — x!Y1i(w) > 0a.s. and hence
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by Lemma 3.1 we have (x2 — x!)#i(w) = 0a.s. Hence §; (w) = & (w) a.s
which implies p(g1) = p(&2) and condition (C4) holds.

Statement 2 follows similarly from Theorem 2.5
Lemma3.1. O

and

Using this corollary we can characterize inclusion relations be-
tween family of sets inducing coherent, or distortion risk measures
for the case 0  ri (conv (supp (u))). For this, we introduce the follow-
ing definitions:

Definition 3.3. Let W, V, V, the set of coherent risk measures defined
over L (2, F, P), V, V, respectively; and let W*, V* V¢ the set of dis-
tortion risk measures defined over L; (2, 7, P), V, V, respectively. We
will denote /(-) as the family of sets that induce all risk measures in
a given set.

Note that, form the definitions above, we always have that/(H*)
U(H) for any H € {W, V, V, }. With these definitions, we can write the
following result:

Corollary 3.4. If0  ri (conv (supp (1))), then
1. U (Vo) = {U < aff(supp(@)) : U is closed and convex} and
UW)cU)={UeU(V,) : U cconv(supp (iT))}.

Hence, U (V) and U (W) can be strictly contained in U (Vo).
2. IfPis a finite uniform distribution then {T1q : q € AN} C U (V%) and

uw) =My : qe A} cu(v) cu).
Hence, U(V*) and U (W*) can be strictly contained in U (V}).

Proof. The characterizations are direct from Corollary 3.2 and
Theorems 2.2, 2.3 and 2.5. In particular, the potential lack of equal-
ity between /(W) and ¢/(V) comes from Remark 2.1. For the first
potential strict containment it suffices to find a closed convex set
U < aff(supp(@)) such that/ ¢ conv (supp (u)). For the second it suf-
fices to find q € AN such that I1q ¢ conv (supp (#)). O

Corollary 3.4 shows that, when 0 € ri (conv (supp (ii))), there are
somewhat reasonable uncertainty sets for random variables in V,
that are not induced by coherent and distortion risk measures
over L1(2, F,P) or V. However, those sets include points outside
conv (supp (if)). Remembering that the risk measure with ¢/(p) =
conv (supp (1)) corresponds to the worst case over all possible real-
izations of the random variable, we conclude that a risk measure with
o’ with conv (supp (f))  U(p) would be clearly over-conservative.
Considering an uncertainty set that neither contains nor is con-
tained in conv (supp (1)) is a bit more reasonable, but it still some-
what strange to include points outside conv (supp (uf)) in the risk
evaluation. To avoid this philosophical issue we now concentrate
on the following result, which holds irrespective of the assumption
0 € ri (conv (supp (i1))).

Corollary 3.5. Let P be a finite uniform distribution for which 0 is not
necessarily contained in
ri (conv (supp (if))). Then

U (W) = {l‘[q 1qe Kﬁ} c{My : ge AV, Tl < conv (supp (1))}
S U(Vy), U (v 9)
Proof. Direct from Theorems 2.3 and 2.5. O

From this corollary, the existence of an actually reasonable uncer-
tainty set for random variables in V, and V (i.e. one that is contained
in conv (supp (1)) and induces measures that satisfy (C1)-(C4), (D1)-
(D2)) that is not induced by coherent and distortion risk measures
over L1 (2, F, P), reduces to the possibility of a strict containment in
(9). We now show that the first containment can indeed be strict.

To show this strict containment we need to find q € AN such that
Tq < conv (supp (i) and for which thereisnor e AY such that [Tq =
I1;. For this, note that, for any r, by definition, we have that I, =
conv({Y N rp@u' : o € Sy}); but each term YN, r,u! can be re-
written as M - P, - r; where M = (u!|...|u"N) and P, is a permutation
matrix (i.e. P, = € and Py e = e) that depends on o. Also, note that
if we know all vertices {v"}ke[m] of Ilq, then, for 14 to be equal to
I, for some r, we need at least that each v¥ is the image of some
permutation matrix P, i.e. 3PX permutation matrix such that vk = M -
Pk r. Proposition 3.6 expresses this idea as an optimization problem.

Proposition 3.6. For agiven q, let {v }kem] be the set of extreme points
of Tq. If there exists r € AN such that T1q = I, then, the following
optimization problem has optimal value zero.

min Y ||s*[|x (10a)
ke[m]
stVk=M -P*.r+s* Vke[m] (10b)
ePk=¢ Vke[m] (10¢)
Pe=e Vke[m] (10d)
ri>ri Vie[N] (10e)
er=1 (10f)
Pk e {0, 1}V*N  Vk e [m] (10g)
skeR? Vke[m] (10h)
rery (10i)

Proof. Problem (10) has as variables the vectors s, r and binary ma-
trices P for k € [m]. Conditions (10c), (10d) and (10g), ensure that P
is a permutation matrix; conditions (10e), (10f) and (10i) ensure that
r e AN, while condition (10b) just says that each vk = M- Pk . r + sk,
To finish, just note that the objective function (10a) can only be zero
when all s* are zero, and thus ensuring that each v¥ corresponds to
one of the points generating the set [T,. O

Note that in the previous result, (10) having optimal value 0 is not
asufficient condition for ITq = Iy, since it only ensures that ITq < IT;.
However, we show that for a particular q, problem (10) has non-zero
optimal value.

Lemma3.7. Thereexistq e AN such that Mg € conv(Q2) and Iq # Iy
forallg e AY.

Proof. Let d=2, N=5, supp (i) = {(8600,5000), (5700,8100),
(1300, 9900), (—9600, 3000), (8500, —5200)} and q = (27/100, 27/
100, 27,100, 27/100, —2/25) € AN, Using a symbolic computation
software it is checked that ext(ITq) = {(905, 3866), (1920,2781),
(3460, 2151), (7275, 4566), (940, 7436)} and 14 < conv(S2). Further-
more, using the exact MIP solvers developed in Espinoza (2006); Cook,
Koch, Steffy, and Wolter (2011), we were able to computationally
prove that the optimal objective value of (10), for this data, is greater
than or equal to 1000.

Note that the exact MIP solvers from Espinoza (2006); Cook et al.
(2011) can only solve linear MIP problems and problem (10) is a
nonlinear MIP problem. However, (10) can easily be transformed into
a linear MIP as follows. The first step is to linearize the products
between P¥ and rin (10b) using a standard technique (e.g. Adams and
Sherali (1986)). For this we introduce matrix variables G* « [0, 1]V<N
for all k € [m]. This matrix will be such that G; = PK -1 foralli, jand

k,rj €[0,1] and Pl"] € {0, 1}. To achieve this we add the set of linear
inequalities given by

Gk <P  Vke[m]

Gij<r  Vije[N] ke[m]

Pf+1<Gj+1 Vije[N]ke[m].
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Fig. 1. Uncertainty sets from Lemma 3.7.

We then simply replace P¥ - rin (10b) with GXe. Finally, to linearize
the objective function we introduce variables sp*, sm* € RY for all
k € [m], replace s¥ in (10b) with sp¥ — sm* and replace the objective
function with Yy i, sp* +sm*. O

Corollary 3.5 and Lemma 3.7 show that there are indeed reason-
able uncertainty sets (distortion risk measures) for random variables
in V and V, that are not induced by coherent and distortion risk
measures over L (2, 7, P). However, while theoretically interesting,
the conditions for constructing or detecting these sets can be highly
intractable. For this reason, in the next section we present a more
practical representation of the uncertainty sets I'lq for q € AN,

4. Epsilon scaling of a risk measure

From Lemma 3.7 we know that there exists risk measures repre-
sented by q AN whose uncertainty sets do not coincide with any
risk measure in ﬁﬁ. However, it is possible to give a different charac-
terization of these uncertainty sets, providing a natural geometrical
interpretation of these measures.

Consider for example the finite uniform probability over the
N =5 points in supp (i) = {ui}?=] = {(8600, 5000), (5700, 8100),
(1300, 9900), (—9600, 3000), (8500, —5200)} and

q = (27/100, 27,100, 27,100, 27,100, —2/25) € AN

used in Lemma 3.7. We can check that q = eq' + (1 — ¢)ey for q' =
(1/4,1/4,1/4, 1/4,0) € K’X and ¢ = 7/5. Note that it is not a convex
combination but an affine combination, because & > 1. Fig. 1 shows
I4 in solid blue, Ty in dashed red and conv(supp (i) in dotted
green. The figure also shows supp (i) as asterisks and ul := % Sl
as a plus sign. We can see from the figure that Ilq is an expansion of
[Ty around the mean u that s still contained in conv(supp (i)). In this
section we show that this figure is representative of all ¢ € AN in that
for such vectors I is always an expansion of Iy for some q' € &ﬁ
This implies that the risk measures associated with elements in AN
are always an affine combination of a distortion risk measure over
L1 (€2, F, P) and the expected value. When ¢ ¢ [0, 1], this convex com-
bination is a well known modification of a risk measure (e.g. see Lagos,
Espinoza, Moreno, and Amaya (2011) and Eq. (6.68) in Shapiro et al.
(2009)), note however that in this case, € is not restricted to be within
[0, 1], as it can take values above 1. Hence the associated measure is

an affine combination of a distortion risk measure over L; (€2, 7, P)
and the expected value. Because the uncertainty sets associated to
these measures are scalings of the traditional sets, we denote these
new measures as epsilon scalings.

Definition 4.1. For a given risk measure p : L;1(2, F,P) > Rand € >
0 let the epsilon scaling of the measure be 5, (V) := € p (V) + (1 —
&) E[V].

It is straightforward to show that if p is a distortion risk measure
over S C L1(2, 7, P) then, forany ¢ € [0, 1], O, is also a distortion risk
measure over S. It is also easy to see that for ¢ > 0 the only property
that p, may fail to inherit is monotonicity. Fortunately, for S =V
or S =V, we can give simple conditions for p. to be a distortion
risk measure. To give these conditions note that the uncertainty set
associated with p. isU(0:) = u + e (U (p) — u) where u := E[u].

Proposition 4.2. Let € > 0, p be a distortion risk measure over V and
P be an arbitrary distribution.

1. Ifu+ e (p) — u) < conv (supp (i), then p, is a distortion risk mea-
sure over V and V,.

2. If 0 e i (conv (supp (1)), then p is a distortion risk measure over
Vo even ift + e (U (p) — 1) ¢ conv (supp (i)).

Proof. Direct from Lemma 3.1, Theorem 2.3 and the preservation of
(D1) and (D2) under linear combinations. O

If we restrict to finite uniform distributions we can show that ep-
silon scalings precisely correspond to the uncertainty sets associated
with elements in AN,

Proposition 4.3. If P is a finite uniform distributions, then {Ilq : q €
AN} ={U(P;) : € = 0and p € W*}.

Proof. For qe AN\ AN let e:=1-Ngy>0 and q:=
% (@+ (e —1)ey). Then gq=¢eq' +(1—¢)ey, €¢>0 and q < Al.
The result then follows from Corollary 3.4. O

5. Computational stability of epsilon scalings
In this section we present a computational example that shows

that epsilon scalings seem to be less susceptible to estimation errors
when approximated using samples. The need for such estimations is
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common inapplications(e.g.Lagosetal.(2011); Vielma, Espinoza, and
Moreno (2009)) and, unfortunately, risk measures such as the Con-
ditional Value-at-Risk (CVaR) measure have been shown to be highly
susceptible to estimation errors in this setting (Lim et al., 2011). For
this reason we study how using the epsilon scaling of CVaR could
help alleviate these estimation errors. Following an approach similar
to that in Lim et al. (2011) we consider a simple portfolio optimiza-
tion problem, in which we have d possible assets we want to invest
over a single time period, and we have to decide what proportion
of our capital we will invest in each of the assets. Every asset i has
a return 1; € [-1, o), such that if we initially invested C; on i then
at the end of the period we will have C;(1 +r;). When the vector
r:=(ry,...,rq) of returns is known this problem is formulated as
max{x'r : ¥e =1, x > 0}. Naturally the vector of returns r is subject
to uncertainty, hence it is necessary to adopt some decision scheme
that considers the risk inherent to the problem. Let (2, 7, P) be a
probability space and let ¥ e L‘f (2, F, P) be the random vector of re-
turns. Interpreting —x'F as the random losses of the portfolio, a classic
and well studied approach to this problem is to minimize the Condi-
tional Value-at-Risk of the losses:

zj = rnxin{CVaRg(—x’?'):x/ezl,sz}, (11)

where CVaRg (V) := min¢ {t + %E[(V - t)+]}. If the distribution of ¥ is
known, then (11) is a well defined convex optimization problem
which can be solved in theory. However, evaluating CVaR requires
multidimensional integration and hence solving (11) is, in general,
intractable. Furthermore, more often than not, the distribution of ¥
can only be accessed through a finite number of samples. A common
data-driven approach for this issue is to use this finite number of
samples to approximate the integrals in the definition of CVaR with
the sample mean. This approximation technique is known as Sample
Average Approximation (SAA) for stochastic programming and its con-
vergence is assured under very broad settings, see e.g. Shapiro et al.
(2009, Section 5.1.1). Assume then that we have a finite i.i.d. sam-
pler! ... N ¢ R? of the vector of returns ¥ (e.g. from past observed
returns or simulations). The SAA version of (11) is given by

* i N : CcV. RN i~ i N / 1 0
e — : = >
Z5 y {r}i=1 ‘= min aRs Xr,{r}i=l Xe=1,x>0;,
(12)
where  CVaR{ (—xF. {r'}} ) := min{t + 5§ XN, [-*7 - (s
CVaRs for the case in which 7 is uniformly distributed in {r‘}f’=1. For
notational convenience we drop the dependence of zj ,, CVaRS’ and
related values, on {rf 1N= 1» while noting that any value or solution
derived from (12) is dependent on the N samples of ¥ and hence
is random unless the sample is fixed. With this in mind, it is well
known that, under mild conditions, z; , converges to z; w.p. 1 as N
grows to infinity and that, under slightly stronger conditions, the
optimal set of (12) also converges w.p. 1 to the optimal set of (11)
(e.g. Shapiro et al. (2009, Section 5.1)). Furthermore, from Rockafellar
and Uryasev (2002, 2000) we have that (12) is equivalent to

B 1 o ) + . 7
min t+m§[—xr—t] iteR Xe=1,x>0}. (13)

Note that this problem can be formulated as linear programming
problem, which can be easily solved. Unfortunately, as noted in Lim
et al. (2011), for moderate values of N and small values of §, the
optimal solutions of (12)/(13) can have a significant difference be-
tween their sampled CVaRg’ and their real CVaRy. Furthermore, the
real CVaRs of these solutions can be far from zj. More specifi-
cally, if xj, is an optimal solution to (12)/(13) it is common to have
CVaRaN(xj(,) « Z; « CVaRs(xy). We aim to use ﬁ/a\Ry‘g (i.e., an ep-
silon scaling of CVaR, with y not necessarily equal to §) to construct
a variant of (12)/(13) with optimal solutions that reduce both these

gaps. Our motivation for this construction can be best illustrated if we
consider elliptical distributions, which have the following convenient
characterization of ¢/ (p) that we prove in Appendices A and B. The
use of this characterization will come from the equivalence between
approximating CVaRs with CVaRf;’ and approximating 4/ (CVaRs) with
U(CVaRy)

Lemma 5.1. Let peRY BeR¥™d be a non-singular matrix
and let FeL‘lj(SZ,]-', P) be such that iy :=XxB~'(F— ) has the
same continuous probability distribution for every xeS%1:=
{x eR? x| = 1}(e.g.?is the uniformly distribution over the ellipsoid

{r eR?: |B(r- W, < 1} orr ~ N (i, BB)). Then, for any distortion
risk measure p we have

Up)={rer: |Br-w| < p@y) (14)
where Xg is an arbitrary element of 4.

If ¥ is distributed as in Lemma 5.1 with B=1 and u =0, then
U(CVaRy) is an Euclidean ball for any §. In turn, the characterization
from Example 2.2 shows that, if N e Z., thent/(CVaRY) is the convex
hull of the (51\,'\,) points in th = {Zf\il h‘é(,-)r" 10 e Sy} for h® defined
in (8) (th corresponds to all averages of 8N points from {r! f"=1).
Now, it is well known that to obtain a good approximations of the
Euclidean ball by a set of the form COI‘lV(th) we need the number of
extreme points of this set to be quite large (see Ball (1997)). While
it is hard to predict the number of extreme points of conv(SAZhl;), it

is likely to be a non-decreasing function of |SAZh,;| = (5’}’\,) Hence, we

would then expect the approximation of 4/ (CVaRg 5) by U (CVaR’OV_ 5) to
be much better that the approximation of ¢/(CVaRy) by U/ (CVaRaN ) for
small §. This aligns with the SAA approximation issues of CVaRs being
worse for small §. Unfortunately, small values of § are precisely the
ones needed to incorporate appropriate levels of risk aversion and
it is unlikely that u(CVaRg_S) will provide a good approximation of
U(CVaRy) for § « 0.5. However, by noting that both ¢/(CVaRg 5) and
U(CVaRy) are Euclidean balls (just with different radii), we have that
u(CVaR’&S) is indeed a good approximation of a scaling of ¢/(CVaRy)
for § « 0.5.Conversely, for any § an appropriate scaling on/l(CVaRS’j)
will be a good approximation of 2/(CVaRy ). More precisely, if ry 5 is the
radius of /(CVaRg 5) and ry is the radius of i/ (CVaRy), then U/ (CVaRs) =
(rs/10.5)U4(CVaRy 5) and hence we expect (r(g/ro‘s)u(CVaRS"s) to be a
better approximation of 2/(CVaRs) than i/ (CVaR(;N ) (at least for small

8). The potential advantage of using CVaR, . emerges by noting that

_— N
scalings of U/ (CVaRB’. 5) are precisely the uncertainty sets 2/ (CVaRy 5 )

of C/Va\Ro,s_s for an appropriately chosen €. We formalize this in the
following corollary that shows how to calculate the appropriate ¢ for
elliptical distributions and all values of 8. Note that the proposition
can be directly extended to CVaR,, . for values of y other than 0.5.

Corollary 5.2. Let 1 € RY, B € RY*d be a non-singular matrix and let
Te L‘{ (R, F,P)besuch thatliy := ¥ B~ (F — 1) has the same continuous
probability distribution for everyx € S&1 := {x e RY : |x||; = 1}. Then,

U(CVaRy) = u(mo,as)for &= %ﬁ%, where X is an arbitrary

element of S9-1.
Proof. Note that CVaRys . (iix,) = £CVaRg 5 (fixy) + (1 — &)E(Hlx,) =
sCVaR0_5(ﬁx0) = CVaR(; (ﬁxo). O
The following example provides a graphical illustration of the
_—N
advantage of using U/(CVaR,s ) over Z/I(CVaRgl) to approximate
U(CVaRy).

Example 5.1. The uncertainty setassociated with CVaRy g for a three-
dimensional standard normal distributed ¥ corresponds to a sphere
of radius 1.6468 centered at the origin. Fig. 2 shows the uncertainty
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Fig. 2. Approximation of ¢/ (CVaRys) by u <CVaR§"/S) and U (CVaRO_S_g) for N =8.

_—N

sets associated with CVaRY 15 (left) and CVaRy 5 .. (right) for a sample
of N =8 random points (with ¢ selected as in Corollary 5.2). The
uncertainty set associated with CVaR'l"/8 has six vertices and eight

_—N

faces. In contrast, the uncertainty set associated with CVaRg 5 . has
30 vertices and 56 faces and seems to give a closer approximation of
the ball.

Corollary 5.2 shows that
Z55. i=min {ﬁ/m‘s,s (—x7):¥e=1,x> 0} (15)

is equivalent to (11) if ¥ is elliptically distributed and ¢ is chosen as
in the corollary (in particular zj 5 . = z). Furthermore, Example 5.1
illustrates how the SAA version (12)/(13) of (11) is not equivalent to
the SAA version of (15) given by

——N
Zj 56N = Min {CVaROAS’g (—XT):Xe=1, x> 0} , (16)

where C/\/ﬁgsve(—x/ﬂ i= emin{t + giy SN [-¥1r — ]} - (1 -
g) %Z?’:] x'ri. However, Example 5.1 also suggests that (16) is
likely to provide a better approximation of (11) than (12)/(13).
While the equivalence between (11) and (15) no longer holds for
general distributions, (16) might still provide a better approximation
than (12)/(13). In particular, it is still reasonable to expect that

u(ﬁ/ﬁ’g’s,e) has a richer structure than u(CVaRfs\’) as the former
is constructed by taking a larger number of partial averages of
the sample points. This could have a smoothing effect similar to
the one depicted in Fig. 2, which could provide more stability for
small sample sizes. Still, as N grows, we can only guarantee that

_—N e
CVaRy 5 . converges to CVaRy s ¢, and this last risk measure may not
be equivalent to CVaRy for any §. However, Corollary 3.4 shows that
CVaRy 5, is a valid risk measure on its own right, which validates

the use of ﬁ/ﬁg&g independent of its potential approximation of
CVaRs. Nonetheless, in the next two subsections we test quality of
this potential approximation on both elliptical and non-elliptical
distributions. We end this section with two observations. The first
one concerns the calculation of the scaling factor ¢ for non-elliptical
distributions. While Corollary 5.2 no longer provides a precise

formula we could still follow its general idea and choose
e~ CVaRs(—x'T) — E[—XxT]
"~ CVaRys(—XF) — E[—XT]

(17)

for some fixed x € S~ Our approach will be to select a SAA approx-
imation of this ratio.

Our final observation is that, similar to (13), (16) is also equivalent
to the convenient problem given by

: 1 ¢ i+
mm{s (t—s—m;[—x/r —t] )
—(1-¢e)XT:teR, x’e:l,xzo} (18)

where ¥ := } >N | i, which can be also easily formulated as a linear
programming problem.

5.1. Results for Gaussian distribution

We begin our experiments with a Gaussian distribution as it sat-
isfies the conditions of Corollary 5.2 and it also allows for the exact
solution of (11). To generate the data for our experiments we utilize
the same historical data for 200 stocks listed in SP-500 used in Vielma,
Ahmed, and Nemhauser (2008) to estimate the mean vector u and
covariance matrix X of these assets. We then assume that the real
distribution of the assets is Gaussian with this mean and covariance.
Hence, by Lemma 5.1, we have that (11) is equivalent to the second-
order conic problem given by

z; = min {CVaRg @) t—xF:xe=1, HEW:\:HZ <t xt> 0}

(19)

where V ~ N(0, 1).
Our objective is to compare the approximation effectiveness of

_—N
CVaRg’ and CVaRy 5 . for this problem, with a particular emphasis on
the quality of the obtained feasible portfolios. For this we proceed as
follows for each § € {0.01, 0.1}.

1. Generate N i.i.d. samples from our real distribution N (i, X).
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Portfolio 200 stocks, delta=0.1 using N=500 samples

Portfolio 200 stocks, delta=0.01 using N=500 samples
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Fig. 3. Mitigating estimation errors of CVaR (Gaussian distribution).
Table 1
Solution quality for portfolio of 20 and 200 stocks for different values of § and N (Gaussian distribution).
Portfolio § z; Type Best solution Average solution
size N=100 N=500 N=10,0000 N=100 N=500 N=10,000
20 0.01 03502  CVaR} 0.3709 0.3610 0.3509 0.4398 0.3932 0.3535
——N
CVaRys .  0.3577 0.3521 0.3503 0.3846 0.3576 0.3506
20 0.1 02195  CVaR} 0.2333 0.2206 0.2197 0.2595 0.2288 0.2200
——N
CVaRys .5  0.2265 0.2208 0.2196 0.2461 0.2253 0.2198
200 0.01 02107  CVaR} 0.2866 0.2412 0.2140 0.3643 0.2665 0.2171
—N
CVaRys .5y  0.2488 0.2190 0.2112 0.2829 0.2267 0.2116
200 0.1 0.1266 CVaRg’ 0.1741 0.1375 0.1272 0.2179 0.1474 0.1277
—N
CVaRys .  0.1545 0.1342 0.1269 0.1916 0.1395 0.1272

2. Solve the sampled CVaR problem (13)and save the optimal solution

XE N
CVaR} -
3. Compute £(§) = %gﬁ;‘% for v ~ N(0, 1).
——N
4. Solve the sampled CVaR 5 . (s) problem (18) and save the optimal

solution x*___ .
CVaRg 5. (s)

5. Plot CVaRs(—x'F) versus CVaR} (—xF)forx e {x* . & .
CVaRs CVaRy s ¢ s

6. Repeat steps 1-5 100 times.

Fig. 3 shows the results for this experiment. Blue xs correspond to

Xx* and green circles correspond to x* . The vertical ma-
CVarY cvary
) CVaRy 5 ¢ (s)

genta line shows the exact z5 as computed by (19), and the diagonal
blue line corresponds to equal values for the real and sampled CVaR.
As expected (e.g. Shapiro et al. (2009, Proposition 5.6)), the sampled
CVaR consistently underestimates the real CVaR and this effect is
more significant for § = 0.01. However, the epsilon scaling tends to
reduce this downward bias. More importantly, the epsilon scaling
reduces variability of both the sampled and real CVaR of the opti-
mal solutions and tends to provide better solutions to the original
problem.

The increased concentration along the real CVaR axis of the epsilon
scalings solutions can be particularly advantageous when consider-
ing hard-to-solve optimization problems. Estimating the real CVaR of
a particular solution can be significantly easier than approximating
the whole CVaR function. Hence, if we can generate a relatively large

number! of potentially good solutions, it is reasonable to estimate
the real CVaR and pick the best one. For instance, if we look at the
best among the traditional solutions (the blue x further to the left)
we can see that it is a relatively good solution. However, generating
enough solutions to guarantee we find such best solution may not
always be computationally feasible. For example, if we consider port-
folio optimization problems with limited diversification or cardinality
constraints problem (11) becomes a mixed integer problem that can
be very hard to solve (Vielma et al., 2008). Hence, in some cases, a
more realistic comparison may be to simulate the effect of solving a
single instance of the appropriate optimization problem by randomly
selecting one of the traditional solutions (blue x’s) and one of the ep-
silon scaling solutions (green circles). We explore this evaluation in
Table 1 where we also study the effect on the results of the number
of samples and the number stocks.

Table 1 shows results for portfolio sized of 20 and 200 stocks,
6 € {0.1,0.01} and sample sizes of N = 100, 500 and 10, 000. Column
Best Solution shows the smallest value of CVaRs(—x'F) over the 100

repetitions for each x ¢ {XZVaRN’ x* __, }. This is intended to il-
8

CVaRy 5 ¢ (s)

lustrate the case in which the optimization problem is easy to use
and we can generate several candidate solutions, evaluate them and
select the best. In contrast, column Average Solution shows the aver-
age value of CVaRs(—x'F) over the 100 repetitions. This is intended

to illustrate the case in which the optimization problem is hard to

T Large enough to have variety, but still significantly smaller than all feasible solu-

tions.
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Fig. 4. Mitigating estimation errors of CVaR (uniform distribution).
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Fig. 5. Mitigating estimation errors of CVaR (normal-inverse Gaussian distribution).

solve and only one or very few solutions can be generated (i.e. we =+ +/Tv (Aas, Haff, & Dimakos, 2006) where v ~ N'(0, £) and

expect this average to be representative of a typical single solution). T follows a generalized inverse Gaussian distribution of parameters
Finally, column z; shows the exact optimal value obtained through A =-05, x =1and ¥ = 1 (following the notation of Prause (1999)).
(19). We can see that the epsilon scaling yields better solutions for On both cases, even evaluating CVaRs requires multidimensional
all parameters and metrics. This advantage is particularly strong for integration. For this reason we compute the scaling factor ¢ in step 3
the metric of average solution and small number of samples and 4. In as the sampled estimation of (17), given by

Appendix B we show how this advantage is increased further when M/ w1 M i
we allow short-selling in the portfolio problem (i.e. when we remove = CVaRI\(jI (XT) + 3 Zi;ﬁ xr :
the non-negativity constraint on x variables). CVaRys(—x'T) + ﬁ i X1
where x is the solution obtained in step 2, and M = 100, 000.

As explained in Shapiro et al. (2009, Section 5.6.1), it is possible
to estimate a lower bound of z; using the law of large numbers com-

puting the average and the variance of CVaRfSV (szaRN) over the 100
)

5.2. Results for other non-gaussian distribution

To study a case in which the conditions of Corollary 5.2 do not
hold we repeat the previous experiment assuming that returns follow

a uniform and a normal-inverse gaussian distribution. In the first repetitions. We use this bound in Figs. 4 and 5 to replace the exact
case, each stock has a return r; = i; + 7j;, where 7; are independent value calculated with (19), which is not applicable here. We now use
random variables uniformly distributed in [—1, 1]. Note that in this a vertical dashed magenta line to emphasize that it is only a lower

case U (CVaRs) for different §s are not scalings of one another. In the bound that holds with high probability and not the exact value of zj.
second case, we assume that r; follows a multivariate normal-inverse Similarly, this bound in Tables 2 and 3 is labeled as zj.

Gaussian distribution, which is a heavy-tailed distribution commonly We again see that the epsilon scaling provides an advantage, par-
used on finance. In this latter case, we assume that stocks have areturn ticularly for small number of samples and 8. Furthermore, while the
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Table 2

Solution quality for portfolio of 20 and 200 stocks for different values of § and N (uniform distribution).

Portfolio 8 pas Type Best solution Average solution
size N=100 N=500 N=10,000 N=100 N=500 N=10,000
20 0.01 0.2044  CVaR} 0.2541 0.2288 0.2123 0.2987 0.2619 0.2144
c’vﬁﬁs 0.2293 0.2173 0.2130 0.2628 0.2243 0.2139
20 0.1 0.0877  CVaR) 0.1117 0.0970 0.0894 0.1427 0.1046 0.0902
——N
CVaR,,  0.1111 0.0931 0.0904 0.1297 0.1000 0.0909
200 0.01 0.0003  CVaRr) 0.1068 0.0591 0.0271 0.1326 0.0677 0.0294
C/Vﬁl:_s 0.0899 0.0425 0.0182 0.1031 0.0475 0.0191
200 0.1 —-0.0410  CVaR} 0.0092 -0.0183  -0.0359 0.03188 -0.0102  -0.0350
_—_N
CVaR,,  0.0058 -0.0222  -0.0363 0.0246 -0.0165 —0.0360
Table 3

Solution quality for portfolio of 20 and 200 stocks for different values of 6 and N (normal-inverse Gaussian distribution).

Portfolio 8 Fas Type Best solution Average solution
size N=100 N=500 N=10,000 N=100 N=500 N=10,000
20 0.01 0.4519  CVaRr) 0.4836 0.4802 0.4654 0.6074 0.5476 0.4700
—N
CVaR,, 04852 0.4620 0.4627 0.5118 0.4730 0.4637
20 0.1 02272 CVaR} 0.2438 0.2303 0.2282 0.2832 0.2432 0.2287
C/Vﬁlyv‘s 0.2387 0.2306 0.2278 0.2561 0.2348 0.2282
200 0.01 02642  CVaRr) 0.4238 0.3328 0.2901 0.5388 0.3796 0.2969
——N
CVaR,, 03452 0.3004 0.2795 0.3823 0.3057 0.2833
200 0.1 0.1293  CVaRr) 0.1901 0.1517 0.1333 0.2472 0.1632 0.1337
@?I:_S 0.1627 0.1417 0.1324 0.1997 0.1469 0.1326

gap between the traditional CVaR and the epsilon scaling is virtu-
ally eliminated for very large number of samples (N = 10, 000), the
epsilon scaling still provides better solutions in both metrics. Again,
results for problems where we allow short-selling are included in
Figs. B.1-B.3 of AppendixB.

6. Conclusions

We have shown that, at least for finite uniform distributions, the
family of uncertainty sets associated with distortion risk measures
over affine or linear random variables is strictly larger that those asso-
ciated with distortion risk measures over arbitrary random variables.
In particular, we have shown that certain expansions of uncertainty
sets associated with distortion risk measures also yield distortion risk
measures over affine or linear random variables. This effectively ex-
pands the family of uncertainty sets with favorable theoretical prop-
erties. To study the potential advantage of these additional uncer-
tainty sets we have included some preliminary experiments that sug-
gest that these expansions could be useful to mitigate estimation
errors.

We finally note that the additional uncertainty sets we have con-
sidered still do not give a precise characterization of the family of
uncertainty sets associated with distortion risk measures over affine
or linear random variables. In particular, it is easy to find examples
where the law invariance property is also moot for linear random vari-
ables. For example, consider Q2 = {—1, 0, 2} with the uniform proba-
bility. In this space a linear random variable is represented by a scalar
x and its realizations are given by {—x, 0, 2x}. It is easy to see that
the random variables associated with x and y have the same distribu-
tion only if —x = 2y and —y = 2x. The only solution to this system is
x =y = 0 and hence there are no non-trivial linear random variables
with the same distribution. More general settings might not com-
pletely eliminate the possibility of non-trivial linear random variables
with the same distribution. However, a significant limitation of such
random variables could validate the use of additional uncertainty sets.

Still, it is likely that any characterization of these yet additional sets
will be highly dependent on the specific structure of 2.
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Appendix A. Proof of Lemma 5.1

Proof.
Up) = {u eR?: ¥u< p@x)forallxe S'”}

= {u eRY : X¥u—p) < p(@—p)x) forallx e S”*l}

/

=Juer?: M
(1),
x—p)< p|@—-py w for all x e S*!
|1y,

={ueR!: ¥Blu—p)<p@B'@{i—p))forallx eSS}

[ueRd:

sup ¥B~1(u— ) < p(ly,) }

xe§n-1

[uert: |Bl@- ), < p@w)}-
The first equality comes from translation equivariance of p, the second

!
one comes from non-singularity of (8—1) , the third from positive

homogeneity of p and the fourth comes from p (iiy) = p(ilx,) forallx e
S"-1because p is law invariant and the assumption on the distribution
of iy, O
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Appendix B. Results for the portfolio problem allowing
short-selling

See Figs. B.1-B.3.

Portfolio 200 stocks, delta=0.1 using N=500 samples

Portfolio 200 stocks, delta=0.01 using N=500 samples
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Fig. B.1. Mitigating estimation errors of CVaR allowing short-selling (Gaussian distribution).
Portfolio 200 stocks, delta=0.1 using N=500 samples Portfolio 200 stocks, delta=0.01 using N=500 samples
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Fig. B.2. Mitigating estimation errors of CVaR allowing short-selling (uniform distribution).
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Fig. B.3. Mitigating estimation errors of CVaR allowing short-selling (normal-inverse Gaussian distribution).

781



782 G. Lagos et al./ European Journal of Operational Research 241 (2015) 771-782

References

Aas, K., Haff, I. H., & Dimakos, X. K. (2006). Risk estimation using the multivariate normal
inverse Gaussian distribution. Journal of Risk, 8 (2), 39-60.

Adams, W., & Sherali, H. (1986). A tight linearization and an algorithm for zero-one
quadratic programming problems. Management Science, 32(10), 1274-1290.

Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathe-
matical Finance, 9(3), 203-228.

Ball, K. (1997). An elementary introduction to modern convex geometry. Flavors of
Geometry, 31, 1-58.

Ben-Tal, A., Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton series in
applied mathematics. Princeton University Press.

Bertsimas, D., & Brown, D. (2009). Constructing uncertainty sets for robust linear opti-
mization. Operations Research, 576, 1483-1495.

Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal,
485, 28-43.

Cook, W., Koch, T., Steffy, D. E., & Wolter, K. (2011). An exact rational mixed-integer
programming solver. In O. Giinliik, & G. J. Woeginger (Eds.), Integer programming
and combinatorial optimization: vol. 6655. Lecture notes in computer science (pp. 104-
116). Springer.

Cvitanig, ., & Karatzas, 1. (1992). Convex duality in constrained portfolio optimization.
The Annals of Applied Probability, 2(4), 767-818. 10.1214/aoap/1177005576.

Espinoza, D. G. (2006). On linear programming, integer programming and cutting planes.
(Ph.D. thesis). Georgia Institute of Technology.

Fertis, A., Baes, M., & Liithi, H.-]. (2012). Robust risk management. European Journal of
Operational Research, 222(3), 663-672.

Hiriart-Urruty, ].-B., & Lemaréchal, C. (2001). Fundamentals of convex analysis. Heidel-
berg: Springer Verlag.

Kawas, B., & Thiele, A.(2011). Short sales in log-robust portfolio management. European
Journal of Operational Research, 215(3), 651-661.

Kolm, P. N., Tiitiincii, R., & Fabozzi, F. J. (2014). 60 years of portfolio optimization:
practical challenges and current trends. European Journal of Operational Research,
234(2),356-371.

Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization
model and its applications to Tokyo stock market. Management Science, 37(5), 519-
531.

Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional
value-at-risk objective and constraints. Journal of Risk, 4(3), 43-68.

Lagos, G., Espinoza, D., Moreno, E., & Amaya, J. (2011). Robust planning for an open-pit
mining problem under ore-grade uncertainty. Electronic Notes in Discrete Mathe-
matics, 37(0), 15-20. LAGOS'11—VI Latin-American Algorithms, Graphs and Opti-
mization Symposium. 10.1016/j.endm.2011.05.004.

Lim, A. E., Shanthikumar, J. G., & Vahn, G.-Y. (2011). Conditional Value-at-Risk in port-
folio optimization: Coherent but fragile. Operations Research Letters, 39(3), 163-171.
10.1016/j.0r1.2011.03.004.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.

Natarajan, K., Pachamanova, D., & Sim, M. (2009). Constructing risk measures from
uncertainty sets. Operations Research, 57(5), 1129-1141.

Pichler, A., & Shapiro, A. (2013). Uniqueness of Kusuoka representations. Optimization
Online. http://www.optimization-online.org/DB_HTML/2012/10/3660.html.

Prause, K. (1999). The generalized hyperbolic model: Estimation, financial derivatives, and
risk measures (Ph.D. thesis). University of Freiburg.

Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal
of Risk, 2(3), 21-42.

Rockafellar, R., & Uryasev, S. (2002). Conditional value-at-risk for general loss distribu-
tions. Journal of Banking & Finance, 26(7), 1443-1471.

Shapiro, A. (2013). On Kusuoka representation of law invariant risk measures. Mathe-
matics of Operations Research, 38(1), 142-152.

Shapiro, A., Dentcheva, D., & Ruszczyfiski, A. (2009). Lectures on stochastic programming:
Modeling and theory. Society for Industrial Mathematics.

Vielma, J. P., Ahmed, S., & Nemhauser, G. L. (2008). A lifted linear programming branch-
and-bound algorithm for mixed-integer conic quadratic programs. INFORMS Journal
on Computing, 20(3), 438-450.

Vielma, J. P., Espinoza, D., & Moreno, E. (2009). Risk control in ultimate pits using
conditional simulations. In Proceedings of the 34th international symposium on ap-
plication of computers and operations research in the mineral industry (APCOM 2009)
(pp.- 107-114).

Wachter, H. P., & Mazzoni, T. (2013). Consistent modeling of risk averse behavior with
spectral risk measures. European Journal of Operational Research, 229(2), 487-495.

Zymler, S., Rustem, B., & Kuhn, D. (2011). Robust portfolio optimization with
derivative insurance guarantees. European Journal of Operational Research, 210(2),
410-424.


http://refhub.elsevier.com/S0377-2217(14)00763-2/bib001
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib002
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib003
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib004
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib005
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib006
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib007
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib008
http://dx.doi.org/10.1214/aoap/1177005576
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib009
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib010
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib011
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib012
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib013
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib014
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib015
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib016
http://dx.doi.org/10.1016/j.endm.2011.05.004
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib017
http://dx.doi.org/10.1016/j.orl.2011.03.004
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib018
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib019
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib020
http://www.optimization-online.org/DB_HTML/2012/10/3660.html
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib021
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib022
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib023
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib024
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib025
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib026
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib027
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib028
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib029
http://refhub.elsevier.com/S0377-2217(14)00763-2/bib030

	Restricted risk measures and robust optimization
	1 Introduction
	2 Notation and background on risk measure and robust optimization
	2.1 Notation
	2.2 Coherent risk measures
	2.3 Distortion risk measures

	3 Distortion risk measures for uniform, discrete random variables in V and Vo
	4 Epsilon scaling of a risk measure
	5 Computational stability of epsilon scalings
	5.1 Results for Gaussian distribution
	5.2 Results for other non-gaussian distribution

	6 Conclusions
	Acknowledgments

	A Proof of [Lemma]5.1
	B Results for the portfolio problem allowing short-selling
	References


