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We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de 
Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy 
black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat 
and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The 
relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm 
method. We explicitly show that there are first order phase transitions similar to the Hawking–Page 
phase transition.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Asymptotically Anti-de Sitter (AdS) black holes play an impor-
tant role in understanding the dynamics and thermodynamics of 
holographic dual field theories via AdS/CFT duality [1]. In particu-
lar, these black holes are dual to thermal states of the ‘boundary’ 
field theory. First order phase transitions in the bulk can be re-
lated to confinement/deconfinement-like phase transitions in the 
dual field theory [2]. Since scalar fields appear as moduli in string 
theory, it is important to understand the generic thermodynamic 
properties of hairy black holes.

Motivated by these considerations, in this paper we study in 
detail the thermodynamics of a general class of exact 4-dimension-
al neutral hairy black holes [3–5] (examples in other dimensions or 
for different horizon topologies can be found in [6–13]). The scalar 
potential is characterized by two parameters and the black hole 
solution has one integration constant that is related to its mass. 
For some particular values of the parameters in the potential, the 
solutions can be embedded in supergravity [5,6]. The scalar field 
potential contains as special cases all the uncharged exact static 
solutions so far discussed in the literature [14–16] (for details, see 
[17]). These static configurations have been extended to dynamical 
black hole solutions [18,19].

There are some subtleties in defining the mass of a hairy black 
hole [20–24]. In [24], a concrete method of computing the mass of 
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an asymptotically AdS hairy black hole was proposed. This method 
is very useful from a practical point of view because it is using just 
the expansions of the metric functions at the boundary. More im-
portantly, it can be used for hairy black holes that preserve or not 
the conformal symmetry (the AdS isometries) of the boundary. We 
are going to use this method, which is based on the Hamiltonian 
formalism [25], to compute the mass of the black hole solutions.

However, based on the physics of AdS/CFT duality, a different 
method was developed, the so-called ‘holographic renormalization 
[26] (see, also, [27–31]1) — for boundary mixed conditions for the 
scalar field, this method was further developed in [36,37]. The 
main idea behind this method is that, due to the holography, the 
infrared (IR) divergences that appear in the gravity side are equiva-
lent with the ultraviolet divergences of the dual field theory. Then, 
to cure these divergences, one needs to add counterterms that are 
local and depend on the intrinsic geometry of the boundary. In this 
way, one can use the quasilocal formalism of Brown and York [38]
supplemented with these counterterms to compute the regularized 
Euclidean action and the ‘boundary’ stress tensor. The energy is the 
charge associated with the Killing vector ∂t and it can be obtained 
from the boundary stress tensor.

Armed with these results, one can investigate the thermody-
namics and phase diagram of the hairy black hole solutions. In 
particular, we show that there are first order phase transitions 
that lead to a discontinuity in the entropy. Similar results were 

1 A similar method for asymptotically flat spacetimes was developed in [32,33]
and some concrete applications were presented in [34,35].
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obtained for a general class of black holes solutions in a theory 
with a conformal invariant scalar field Lagrangian [39].

The rest of the paper is organized as follows. In Section 2, we 
review the exact hairy black hole solutions and briefly present 
some of their properties. Section 3 is dedicated to the computa-
tions of the thermodynamic quantities. To gain some intuition, we 
present a detailed computation of Schwarzschild–AdS (SAdS) black 
hole in the coordinates the hairy solution was written. Then, to 
regularize the Euclidean action (and the boundary stress tensor), 
we propose a counterterm that depends on the scalar field and it 
is intrinsic to the boundary. The mass is computed with the coun-
terterm formalism and, also, by the method of [24]. In Section 4, 
we use the results in the previous section to investigate the ex-
istence of the phase transitions. Then, Section 5 concludes with a 
summary of results.

2. Black hole solution

We are interested in asymptotically AdS hairy black hole solu-
tions with a spherical horizon [4,5]. The action is

I[gμν,φ] =
∫
M

d4x
√−g

[
R

2κ
− (∂φ)2

2
− V (φ)

]

+ 1

κ

∫
∂M

d3xK
√

−h (1)

where V (φ) is the scalar potential, κ = 8πG N , and the last term 
is the Gibbons–Hawking boundary term. Here, hab is the boundary 
metric and K is the trace of the extrinsic curvature. The metric 
ansatz is

ds2 = �(x)

[
− f (x)dt2 + η2dx2

f (x)
+ dθ2 + sin2 θdφ2

]
(2)

We consider the following scalar potential, which for some partic-
ular values of the parameters it becomes the one of a truncation 
of ω-deformed gauged N = 8 supergravity [5,40,41]:

V (φ) = �(ν2 − 4)

6κν2

[
ν − 1

ν + 2
e−φlν (ν+1) + ν + 1

ν − 2
eφlν (ν−1)

+ 4
ν2 − 1

ν2 − 4
e−φlν

]
+ α

κν2

[
ν − 1

ν + 2
sinhφlν(ν + 1)

− ν + 1

ν − 2
sinh φlν(ν − 1) + 4

ν2 − 1

ν2 − 4
sinh φlν

]
(3)

The equations of motion can be integrated for the conformal factor 
[4,7,9,11]:

�(x) = ν2xν−1

η2(xν − 1)2
(4)

where α and ν are two parameters that characterize the hairy 
solution. With this choice of the conformal factor, it is straight-
forward to obtain the expressions for the scalar field

φ(x) = l−1
ν ln x (5)

and metric function

f (x) = 1

l2
+ α

[
1

ν2 − 4
− x2

ν2

(
1 + x−ν

ν − 2
− xν

ν + 2

)]
+ x

�(x)
(6)

where η is the only integration constant and l−1
ν = √

(ν2 − 1)/2κ .
The potential and the solution are invariant under the trans-

formation ν → −ν . For x = 1, which corresponds to the bound-
ary, we can show that the theory has a standard AdS vacuum 
V (φ = 0) = �
κ . In the limit ν = 1, one gets lν → ∞ and φ → 0

so that the SAdS black hole is smoothly obtained.
The mass of the scalar field can be easily computed from the 

expansion of the potential and we obtain m2 = −2/l2, which is 
the ‘conformal’ mass. It is also important to point out that there 
are two distinct branches, one that corresponds to x ∈ [0, 1] and 
the other one to x ∈ [1, ∞] — the boundary is at x = 1 and the 
curvature singularities are at x = 0 for the first branch and x → ∞
for the second one (these are the locations where the scalar field 
is also blowing up).

3. Thermodynamics

In this section we use the quasilocal formalism supplemented 
with counterterms to compute the Euclidean action and hairy 
black hole’s energy. For completeness, we also compute the mass 
with the method of [24] that is based on the Hamiltonian formal-
ism [25].

As an warm-up example, let us start with SAdS black hole in 
the coordinates (2) that can be obtained when the hair parameter 
is ν = 1. The metric (2) becomes in this case

�(x) = 1

η2(x − 1)2
,

f (x) = 1

l2
+ 1

3
α(x − 1)3 + η2x(x − 1)2 (7)

To obtain the SAdS black hole in the canonical form, one has to 
change the coordinates as

x = 1 ± 1

ηr
(8)

The reason is that, as we have already discussed, there are two 
branches that correspond to x ∈ [0, 1] and x ∈ [1, ∞]. Since there 
are some subtleties for computing the action for x ∈ [1, ∞] branch 
(for example, the extrinsic curvature is changing the sign due to 
a change of the normal to the foliation x = constant), in what fol-
lows we explicitly work with the branch x ∈ [0, 1]. In this case, 
using the change of coordinates (8) we obtain the SAdS black hole 
in canonical coordinates:

�(x) f (x) = F (r) = 1 − μ

r
+ r2

l2
, μ = α + 3η2

3η3
(9)

It is well known that the action has divergences even at the tree 
level due to the integration on an infinite volume. To regularize 
the action, we use the counterterms [27]:

I[gμν ] = Ibulk + IGH − 1

κ

∫
∂M

d3x
√

−h

(
2

l
+ Rl

2

)
(10)

where R is the Ricci scalar of the boundary metric hab .
Let us first compute the bulk action — in this case, since the 

scalar field vanishes the potential becomes the cosmological con-
stant: V = �

κ = − 3
l2κ

. We use the trace of the Einstein tensor and 
following combinations of the equations of motion

Et
t − Eφ

φ = 0 ⇒ 0 = f ′′ + �′ f ′

�
+ 2η2

Et
t + Eφ

φ = 0 ⇒ 2κV (φ) = − ( f �′′ + f ′�′)
�2η2

+ 2

�
(11)

to obtain

I E
bulk = 4πβ

3 2

[
− 1

3
+ 1

3

]
= 4πβ

2
(r3

b − r3
h) (12)
η κl (xb − 1) (xh − 1) κl
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Here, xb and xh are the boundary and horizon locations, and β is 
the periodicity of the Euclidean time that is related to the temper-
ature by β = T −1.

The Gibbons–Hawking surface term can be computed if we 
choose a foliation x = constant with the induced metric ds2 =
habdxadxb = �(x)

[− f (x)dt2 + dθ2 + sin2 θdφ2
]
. The normal to the 

surface x = constant and extrinsic curvature are

na = δx
a√
gxx

, Kab =
√

gxx

2
∂xhab (13)

and the contribution of the Gibbons–Hawking term to the action 
is

I E
GH = −2πβ

κ

[
− 6

l2η3(x − 1)3
− 4

η(x − 1)
−

(
α + 3η2

η3

)]∣∣∣∣
xb

= −2πβ

κ

(
6r3

b

l2
+ 4rb − 3μ

)
(14)

The last contribution is given by the gravitational counterterm, 
which is an intrinsic surface term that depends only on the ge-
ometry of the boundary

I E
ct = 2πβ

κ

[
4

l2η3(xb − 1)3
+ 4

η(xb − 1)
− 2μ

]

= 2πβ

κ

(
4r3

b

l2
+ 4rb − 2μ

)
(15)

We can explicitly see that the divergences proportional with 
rb → ∞ and (rb)

3 → ∞ cancel out and so the regularized action is

I E = I E
bulk + I E

GH + I E
ct = 4πβ

κl2

[
1

η3(xh − 1)3
+ μl2

2

]

= 4πβ

κl2

(
−r3

h + μl2

2

)
(16)

The computations for the general hairy black hole (2), (4), (6) are 
more involved but similar with the ones above and we do not 
present all the details here. In this case, the action should be sup-
plemented with a counterterm that depends also on the scalar 
field [26,29,36,37].2 We work with a counterterm that is intrin-
sic to the boundary geometry (it does not depend on the normal 
to the boundary or the normal derivatives of the scalar field) [36,
37]:

I E
φ =

∫
∂M

d3xE
√

hE

(
φ2

2l
− lν

6l
φ3

)

= 4πβ

κ

[
− ν2 − 1

4l2η3(xb − 1)
+ ν2 − 1

3l2η3

]
(17)

The sum of the other terms in the action is

I E
bulk + I E

sur f + I E
ct = − 1

T

(
AT

4G

)
+ 4πβ

κ

[
ν2 − 1

4l2η3(xb − 1)

+ 12η2l2 + 4αl2 − 4ν2 + 4

12l2η3

]
(18)

where A = 4π�(xh) is the area of the horizon. It is worth men-
tioning that the gravitational counterterm [27] is not sufficient to 

2 A more detailed analysis including concrete counterterms for (non-)logarithmic 
branch and a comparison with the Hamiltonian formalism is going to be presented 
in [37].
cancel the divergence in the action (there is still a term propor-
tional to (xb − 1)−1) but when we add the counterterm (17) we 
obtain a finite action:

I E = β

(
− AT

4G
+ 4π

κ

3η2 + α

3η3

)
(19)

In the classical limit, the action is related to the thermodynamic 
potential (the free energy F in our case), which is F = I E/β =
M − T S . Using the well-known thermodynamic relations or by 
comparing the two formulas, one can extract the mass of the hairy 
black hole:

M = 1

2G

(
α + 3η2

3η3

)
(20)

Since we have constructed the regularized action, we can use 
the quasilocal formalism of Brown and York [38] to construct the 
boundary stress tensor, which is the variation of the action with 
respect to the induced metric:

τab = − 1

κ

(
Kab − hab K + 2

l
hab − lEab

)

− hab

l

(
φ2

2
− lν

6l
φ3

)
(21)

The boundary metric can be locally written in ADM-like form:

habdxadxb = −N2dt2 + σi j(dyi + Nidt)(dy j + N jdt) (22)

where N and Ni are the lapse function and the shift vector re-
spectively and yi are the intrinsic coordinates on a (closed) hyper-
surface �. The boundary geometry has an isometry generated by 
the Killing vector εa = (∂t)

a for which the conserved charge is the 
mass:

M = Q ∂
∂t

=
∮
�

d2 y
√

σnaτabε
b = σ�1/2 f −1/2τtt

∣∣∣∣
xb

= 4π

κ

[
α + 3η2

3η3
+ O (x − 1)

]
(23)

where na = (∂t)
a/

√−gtt is the normal unit vector to the surface 
t = constant.

We can also obtain the mass by using the method of [24]. With 
the change of coordinates

x = 1 − 1

ηr
+ (ν2 − 1)

24η3r3

[
1 + 1

ηr
− 9(ν2 − 9)

80η2r2

]
+ O (r−6) (24)

we can read off the mass from the subleading term of gtt :

−gtt = f (x)�(x) = r2

l2
+ 1 + α + 3η2

3η3r
+ O (r−3) (25)

The reason is that the asymptotic expansion of the scalar field be-
comes in these coordinates

φ(x) = l−1
ν ln x = − 1

lνηr
− 1

2lνη2r2
+ ν2 − 9

24η3r3
+ O (r−4) (26)

and we obtain that the coefficient of the leading term is −(lνη)−1

and the subleading term is −(2lνη2)−1. Both modes are normaliz-
able and correspond to a solution for which the conformal symme-
try of the boundary is preserved. Therefore, we obtain

M = 1
(

α + 3η2

3

)
(27)
2G 3η



A. Anabalón et al. / Physics Letters B 743 (2015) 154–159 157
Fig. 1. (a) Dimensionless free energy versus dimensionless temperature, for different values of ν and fixed α = −10l−2 and positive scalar field. The plots are for ν = 1, ν = 1.9
and ν = 3 (from down up). The free energy of Schwarzschild AdS (ν = 1) goes to zero when T goes to infinity. The free energy of the hairy black holes goes to a constant at 
infinite temperature. (b) Dimensionless free energy versus dimensionless temperature, for different values of ν and fixed α = 10l−2 and negative scalar field. The plots are 
for ν = 1, ν = 1.9 and ν = 3 (from down up).

Fig. 2. (c) Dimensionless mass versus dimensionless temperature, for different values of ν and fixed α = 10l−2 and negative scalar field. The plots are for ν = 1, ν = 1.9 and 
ν = 3 (from left to right). Here it is possible to see the existence of small and large black hairy black holes in exact resemblance with Schwarzschild AdS. (d) Dimensionless 
mass versus dimensionless temperature, for different values of ν and fixed α = −10l−2 and positive scalar field. The plots are for ν = 1, ν = 1.9 and ν = 3 (from left to
right). Here it is possible to see the existence of small and large black hairy black holes in exact resemblance with Schwarzschild AdS.
and this result matches the mass computed above with the 
quasilocal formalism. Using the following expressions for the tem-
perature and entropy

T = f ′(x)

4πη

∣∣∣∣
x=xh

= 1

4πη�(xh)

[
α

η2
+ 2 + ν

xν
h + 1

xν
h − 1

]
,

S = A

4G
= 4π�(xh)

4G
(28)

one can easily check that the first law dM = T dS is satisfied.
As we have already mentioned, the solutions fall into two dis-

tinct classes. For the family with a positive scalar field the mass 
is
M = − 1

2G

(
α + 3η2

3η3

)
(29)

and temperature

T = − 1

4πη�(xh)

[
α

η2
+ 2 + ν

xν
h + 1

xν
h − 1

]
(30)

with the entropy given by the area law.

4. Phase transitions

The AdS spacetime can be thought to have a potential wall as 
one approaches the asymptotic infinity and it behaves as an infi-
nite box (more rigorously, it has a conformal boundary). Since it is 
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not a globally hyperbolic spacetime the information can leak out 
or get in through the boundary and so, to obtain a well-defined
problem, one has to impose boundary conditions.

The scalar field satisfies different boundary conditions depend-
ing on whether it is positive or negative, which corresponds to 
the two families of solutions mentioned before. A classical field 
theory is completely defined when the boundary conditions are 
prescribed. For any boundary conditions on the scalar field, the 
non-trivial vacuum configuration given by SAdS black hole solu-
tion should be included as an allowed state of the theory. Hence, 
in the canonical ensemble, its free energy can be compared with 
the one of the hairy black hole at a given temperature. Fig. 1(a) 
shows that, for the family with a positive scalar field, SAdS is al-
ways more favorable than the hairy configuration. Fig. 1(b) shows 
the same phenomena for the family with a negative scalar field. 
We found that generic values of α do not change the qualitative 
behavior of the phase diagrams.

As in the SAdS case, there are two branches consisting of large 
and smaller black holes. Figs. 2(a) and 2(b) show the mass versus 
the temperature for the families with a positive scalar field and 
a negative one, respectively. These plots provide information about 
the specific heat

C = ∂M

∂T
(31)

that is interpreted as the slope.
The entire branch of smaller black holes (for both families) is 

unstable thermodynamically and has a positive free energy, while 
the large black holes branch are stable thermodynamically and the 
free energy goes negative for all T > Tc . Unlike the planar black 
holes for which do not exist first order phase transitions with 
respect to AdS, the free energy is changing the sign. This is an 
indication that, for hairy black hole solutions with spherical hori-
zon geometry, there are first order phase transitions with respect 
to thermal AdS — the large black hole solutions that have a nega-
tive free energy with respect to AdS are clearly the preferred ones.

5. Conclusions

From the point of view of AdS/CFT duality, the study of the 
thermodynamics of asymptotically AdS black holes is relevant to 
understanding the phase diagram of some holographic dual field 
theories. We have investigated the thermodynamics of a general 
class of hairy black holes with boundary conditions for a scalar 
field with the conformal mass m = −2/l2, which preserve the AdS 
isometries. It is worth remarking the close similarity that we have 
observed with the familiar structure of SAdS black hole. The large 
hairy black holes are thermodynamically stable, and the smaller 
ones have a negative specific heat.

We have computed the Euclidean action (and so the thermody-
namic potential) by using the quasilocal formalism supplemented 
with counterterms. Using these results, we have shown that there 
exist first order phase transitions between the thermal AdS and 
hairy black hole. On the other hand, by comparing the free energy 
of the hairy black hole with the one for the SAdS solution, it seems 
that the SAdS black hole is always preferred.

An interesting future direction is to check the existence of grav-
itational solitons as in [42] and the implications for the phase dia-
gram. It will be also interesting to study the phase diagram of the 
family of exact charged hairy black holes presented en [4]. In this 
case, one can study both, the canonical and grand-canonical en-
semble, respectively. In the canonical ensemble the charge, which 
is an extensive variable, should be kept fixed. Since AdS spacetime 
with a fixed charge is not a solution of the equations of motion, it 
is appropriate to compute the Euclidean action with respect to the 
ground state that is the extremal black hole in this case [43]. Us-
ing similar arguments as in [44,45] it was shown in [4] that there 
exist extremal black holes with a finite horizon area and so it is 
expected that the canonical ensemble is well defined.
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