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Abstract
Previous work by the authors introduced the possibility of generating seed magnetic fields by
spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed
out that it would be worthwhile to consider the effect in other background geometries and
particularly in the vicinity of a rotating black hole, which is generically to be expected,
astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic
field seed due to Reissner–Nördstrom and Kerr spacetimes. The conditions for the drive for the
seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive
vanishes. Also, the ψN-force produced by the Kerr black hole is obtained and its relation with the
magnetic field seed is discussed, producing a more effective drive.

Keywords: seed magnetic field, general relativistic drive, Kerr metric

(Some figures may appear in colour only in the online journal)

1. Introduction

Most astronomical objects have magnetic fields. If one thinks
about it, this fact is surprising. The early universe was very
homogenous and isotropic, as is evidenced by the microwave
background. Magnetic fields, however, have preferred direc-
tions. How did such fields originally develop? That they have
been significant in the universe since fairly early times is
borne out by the extremely high energies achieved by cosmic
rays, that seem to have been provided by very high magnetic
fields. The problem of generating such magnetic fields has
been addressed in the literature [1–3]. It is to be expected that
only a small field would have been generated spontaneously
initially and that field would later have been enhanced by
some nonlinear processes later.

Mahajan and Yoshida [4] suggested, that the fields could
be generated by a sufficiently hot plasma due to special
relativistic effects. Later its implications were studied [5]. It
relies on the length contraction involved in rotational motion
[6] that had been pointed out by Einstein himself [7] and led

him to the conclusion that the geometry of the space could not
be Euclidean. The reason is that there would be length con-
traction along the direction of motion but not perpendicular.
Thus the rim would be reduced in circumference but the
diameter would be unaltered and hence their ratio would not
be π. It is natural, then, to ask whether the seed magnetic field
generation could not be caused by spacetime curvature. This
was proposed by the present authors [8]. We used the
Schwarzschild black hole as the background to provide the
curvature for explicitly estimating the magnitude of the effect.
It would be more realistic to consider the Kerr (spinning)
black hole to provide the effect. In this paper the previous
calculations are extended to the charged and rotating black
holes and the modification of the effects obtained.

The extension to general relativity can be obtained by
other means but it can also be understood in terms of a
formalism that re-expresses general relativity in terms of a
modified gravitational force [9, 10]. This is convenient for the
further extensions pursued in this paper. The plan of the paper
is as follows. In the next section a brief review of this
formalism is provided and its application to the general
relativistic drive is provided. In the third section a brief
review of the proposal for magnetic seed generation by a
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special relativistic drive for plasmas is given. In the sub-
sequent section the formalism is applied to the extension of
the earlier proposal to a plasma around a Reissner–Nördstrom
(charged) black hole, for which the proposal can be directly
extended. For the more realistic Kerr (rotating) black hole the
proposal needs to be slightly re-worked. This is done in
section five. A brief summary and discussion follows in the
last section.

2. Review of pseudo-Newtonian formalism

The ‘pseudo-Newtonian’, or ψN -formalism, takes a preferred
frame corresponding to an observer falling freely in a grav-
itational field either from rest at infinity, or at any place with a
velocity corresponding to that which would have been
achieved if it had fallen freely at rest from infinity to that
place [9, 10]. While relativity replaces forces by the curvature
of a spacetime, this formalism effectively ‘straightens out’ the
spacetime and writes the geodesics as if they were straight
lines bent due to an (appropriately modified) force of gravity
called a ψN -force. The observer then sees a Minkowski space
and so the corresponding spacelike sections are flat. Hence
the frame is given by a flat foliation of the spacetime [11, 12].
It is a special Fermi–Walker frame [13].

The basic idea is that whereas a freely falling observer
does not feel the force of gravity, the tidal acceleration can
still be measured, as the geodesic deviation

=μ
νρπ
μ ν ρ π R t p t , (1)

where νρπ
μR is the curvature tensor, νt is the unit timelike

vector along the geodesic giving the observerʼs world line and
ρp is the position vector of a point on a neighbouring geodesic

seen by the observer. This can be modeled by an ‘accel-
erometer’ consisting of a cylinder containing two equal
masses connected by a spring. The ρp now represents the
accelerometer. The observer holds one end and the spring
ends in a needle attached to the other end. The needle swivels
freely on a dial so that as the spring is stretched the needle
shifts to the positive side, giving a measure of the stretching
force and to the negative side if the spring is compressed,
giving a measure of the compressing force. By turning the
accelerometer till the maximum reading is obtained, a freely
falling observer in a closed laboratory would be able to
measure the direction and magnitude of the stretching or
squashing tidal force on a unit test mass.

The tidal force in normal Newtonian gravity would have
a similar effect on the accelerometer. It is the directional
derivative of the Newtonian gravitational force. Since we
have effectively replaced the curved spacetime of relativity by
Minkowski spacetime with a force bending the geodesics, we
can define the ψN -force to be that quantity whose directional
derivative along the accelerometer is the tidal force. This
works properly when we take the maximized magnitude of
the tidal force. Since normal gravity causes stretching, one
gets a measure of the gravitational force along the direction
the accelerometer is held. If there were a repulsive gravity

component or the force of gravity acted less, the stretching
would be reduced. This would apply in a situation even where
the repulsive component dominates as one could then max-
imize the negative reading. The single accelerometer could be
upgraded to a cluster and the gravitational force could then be
fully mapped by the observer.

Here t would be taken to provide the basis vector for time
and hence provide a frame. The preferred frame is the one
corresponding to the observer falling freely from rest at
infinity. The gravitational force so defined depends on the full
zero-zero component of the metric tensor and hence gives the
relativistic generalization of the Newtonian force. One could
ask for the potential that gives this force. For static or sta-
tionary spacetimes one can easily then define the potential
that would yield this force, which we call the ψN -potential.
This turns out to be [14] gln

oo
. Of course, in general one

would need to use the full metric tensor for all components of
the potential to play a role. Nevertheless, the gauge freedom
would allow reduction to six potentials in a preferred frame. It
is the time invariance of the metrics chosen that makes it so
convenient to construct the preferred frame, even if we have
only circular symmetry. (For completeness it may be men-
tioned that the formalism is also extended to non-stationary
spacetimes and yields the momentum imparted to test parti-
cles by a time varying gravitational field as well [15].)

3. Review of Proposal

The essential problem is to find a way of getting a preferred
direction, of the magnetic field, when there was none to start
with. Fluctuations in a plasma would lead to transient mag-
netic fields that come and go, but we need a mechanism to get
a magnetic field that sustains itself long enough for nonlinear
effects to make it grow, so that small fluctuations cannot wipe
it out.

There is a theorem that no fields will develop in a plasma
spontaneously. This comes from the fact that the circulation

∮ δQ
L t( )

, associated with a physical quantity δQ, calculated

along the moving loop L(t), may be zero or finite depending

on whether ∮ δQ
L t( )

is an exact differential φd (φ being a state

variable). Due to conservation of momentum, the rate of
change of the circulation associated with the canonical
momentum would be zero. This would amount to the closed
integral of the differential of the total energy of the system
over the loop, which must be zero. Here the energy would be
the sum of the kinetic and potential energies and the enthalpy.

For a rotating plasma, as mentioned earlier, there is an
extra inverse of the Lorentz factor to be associated with the
loop. Thus, what was an exact differential does not remain an
exact differential.

The canonical momentum need not necessarily only be
the usual momentum but can also include the angular
momentum. In the absence of any intrinsic angular
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momentum,

= + ∂μν μν μ ν( )M
q

c
F mc fU2 , (2)[ ]

where μνF is a generalized Maxwell tensor for any generalized
4-vector potential μA , the four-velocity of the plasma is μU , c
is the speed of light, q and m is the charge and mass, the
average factor of increase of mass due to thermal motion is
represented by the f function, and the square bracket stands
for the skew of a tensor quantity, which incorporates a half.
For non-relativistic temperatures T (i.e. when the speeds of
the particles are much less than the speed of light) ≈f 1 but
would be significantly greater than 1 at relativistic tempera-
tures. For example, ≈f 20 3 for =T MeV1 .

The generalized force, incorporating thermodynamic
effects, is:


γ

σ= cT
F , (3)L

where σ is the entropy, and γ is the Lorentz factor. If the curl
of this force were zero no field would be generated as the
force would be irrotational. However, if there is a temperature
gradient or a varying Lorentz factor, a generalized magnetic
field would be generated. The former yields the usual bar-
oclinic field

 
γ

σ= − ×∼ c

q
TB , (4)b

and the latter yields the special relativistic drive

 
γ σ= − ×∼ ⎜ ⎟⎛

⎝
⎞
⎠

c T

q

v

c
B

2
, (5)r

2

where v is the velocity.
If the kinematic and temperature gradients have the same

magnitude, the ratio of the relativistic to the baroclinic fields
is γv c( )2, which can become extremely large. We need that
this drive, to generate the generalized magnetic field, should
be greater than the resistive dissipative term, so that magnetic
fields can build up. The ratio of the relativistic drive to the
dissipation, under some reasonable approximations, is

γ

ν ω
≈

( )
R

v c T mc

v c

( )

( )( )
, (6)r

A p

2 2

where vA is the Alfven speed, ωp is the plasma frequency and ν

is the collision frequency. For sufficiently large rotational and
thermal velocities this ratio can be very significant in the early
stages. For an electron gas of density1010/cc at ∼T 20 eV and

∼ −v c 10 2, the relativistic drive dominates over the dissipa-
tion till a magnetic field of ∼1 G is reached, after which the
dissipation would take over.

One might wonder how a change of frame of reference
can make a physical difference. Any change made can be
undone. However, for one thing we have a rotating plasma
that provides the vorticity (if it is not isothermal and isen-
tropic) and for another, we are strictly speaking not using
special relativity, which applies only for constant velocities,

but have a changing velocity, despite having a constant speed.
(For completeness it should be mentioned that the original
‘restricted’ theory of relativity applied for only inertial frames
and not for accelerated frames and the general theory
removed that restriction. Gravity was originally used as a tool
for removing the restriction. The general theory was not
originally formulated as a theory of gravity.) Of course, we
have ‘smuggled in’ the preferred direction with the rotating
plasma. As such, it is not so surprising that we have been able
to generate a magnetic field from it. Can one do better?

The authors of this paper proposed a general relativistic
analogue of this drive [8]. The point is that we can take the
local rest-frame at one point of a curved spacetime, as given
by the tangent space using Riemann normal coordinates, and
compare it with the local rest-frame at another point. There
will be a definable local Lorentz factor there, giving the
special relativistic effect, now produced by gravity. The GR
effects open up the exciting possibility of spontaneous gen-
eration of magnetic fields near gravitating sources without
appealing to relativistic rotational speeds of plasmas asso-
ciated with relativistic temperatures.

Now, use the canonical break-up of the metric tensor,

α β Γ= − −ds dt dtdx dx dx2 , (7)
i

i
ij

i j2 2 2

where α is called the lapse function, β
i
the shift vector and Γij

is the 3-space metric tensor. For the ψN -frame the shift vector
is zero and the potential is αln . Clearly, one can extend the 3-
metric to 4-dimensions in the canonical formalism by defining
Γ = −μν μ ν μνt t g . The local Lorentz factor is

γ α Γ= − μν
μ ν −( )t t2 1 2

. One again gets a generalized magnetic

field B, a generalized electric field and thus a generalized
vorticity vector

Ω γ= + × ( )mc

q
fB v . (8)

The generalized vorticity evolves due to effect of the bar-
oclinic and the (general) relativistic terms:

Ω Ω− × × = +∼ ∼( )v B B . (9)t b r,

The baroclinic term stays as it was but the new relativistic
drive now becomes

 
γ α σ= − ×∼ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

c T

q

v

c
B

2
. (10)r

2
2

The ratio of the two terms here is


γ τ α≈ −⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

B

B

v

c2
, (11)r

b

2 2
2

where τ is the scale length of variation of temperature, re-
scaled to incorporate the factor due to curvature, coming from
the square-root of the lapse function, α. This factor can, in
principle, be arbitrarily large if the two gradients are com-
parable in magnitude and have different directions. Notice
that the second gradient is related to the ψN -force.
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The estimates were used for simplicity for an electron-
positron plasma around a Schwarzschild black hole:

θ θ ϕ= − − +ν ν− ( )ds e dt e dr r d dsin , (12)r r2 ( ) 2 ( ) 2 2 2 2 2

where = −νe r r1r
o

( ) and = −r Gm c2o
2 is the Schwarzschild

radius, m being the black hole mass. The baroclinic term will
be zero as the entropy will be just a function of temperature of

the accretion disc, σ = ( )f T , and so the gradients of the two

will be parallel. Taking the usual definition of entropy, which
is valid beyond about r5 o as significant nonlinearity effects
come in only closer, the relativistic drive comes out to be

ζσ
=

′
−∼ ν

ϕ

−⎛
⎝⎜

⎞
⎠⎟

r e

qr

r

r
TB

3

4
1

3

2
, (13)o

r

2

3
0

1 2

where q is now the electron charge, ζ is of order unity,
σ σ′ = ∂T , and = ∂ϕ ϕT T . Taking the plasma to be in a thin disc

the drive will act along the z-axis and the plasma will lie in
the xy plane. For r5 o this gives a very small drive (for a solar
mass black hole) at the temperature to be expected [16],

∼ −10 6 G. However, as we go closer in, the seed field rises
exponentially. The calculation would become more tricky in
the details due to the modification required for the definition
of entropy, but the basic estimates would largely carry
through.

4. Extension to Reissner-Nördstrom and Kerr black
holes

We will first consider the electrically charged, or Reissner–
Nördstrom, black hole. Since astrophysical bodies are
assumed to be charge neutral, it is not expected to have any
physical relevance. Nevertheless, it is instructive to try to
extend the above calculations to it, since it has a metric, which
is the same as the Schwarzschild but with

= − +νe GM c r GQ c r1 2r( ) 2 2 4 2, Q being the charge in
appropriate units. We use the ψN formalism for the extension
rather than a more precise calculation with back-reactions
taken into account, as we are interested in an estimate of the
effect that gives physical insights rather than in its precise
magnitude. Now, here

 = −νe G
M

r c

Q

c r
2 . (14)

2 2

2

4 3

Since the difference from the Schwarzschild comes from the
second term, which is subtracted from the first, there is a
reduction of the drive a by Mrc Q2 2. The black hole radius is
now

= + −+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r

GM

c

Q

GM
1 1 , (15)

2

2

2

which will be real only if ⩽Q GM2 2. For the equality it is
called an extreme black hole and the radius becomes half the
Schwarzschild value. In this case the drive reduces to

−+( )r r 1G M

c r

2 2 2

4 2 . Thus, at the minimum value of r, namely

+r , this reduction will completely eliminate the drive.
The more realistic modification is for a spinning, or Kerr,

black hole, with angular momentum per unit mass a. Here
another complication arises. The point is that there is frame-
dragging due to the Lense–Thirring effect [13], which chan-
ges with the polar angle, θ, being maximum at the equator and
zero at the poles. This leads to an off-diagonal ( ϕ−t ) term in
the metric and gives non-trivial dependence on θ, apart from
r. The metric now becomes,

ρ θ ϕ ϕ= − − − +ds Ac dt Bdr d Cd Dcdtd2 , (16)2 2 2 2 2 2 2

where, putting =R Gm c2 and using gravitational units
= =c G 1

χ
ρ
ρ
Δ

ρ θ
χ θ
Δ

ρ
θ θ

ρ
θ

=

=

= +
= − +
= − +

= + +

=

⎛
⎝⎜

⎞
⎠⎟

A

B

r a

r Rr a

r Rr a

C r a
Rra

D
Rra

,

,

cos ,

2 cos ,

2 ,

2
sin sin ,

2
sin , (17)

2

2

2

2 2 2 2

2 2 2 2

2 2

2 2
2

2
2 2

2
2

and the black hole radius is at

= + −+r R R a . (18)2 2

The ψN -potential is ϕ = gln
oo

and the corresponding

ψN -force is

ϕ
ρ χ

θ θ θ= − −
⎛
⎝⎜

⎞
⎠⎟

R
r

a

c
r

a

c
cos , 2 sin cos , 0 . (19)

2 2
2

2

2
2

2

2

The radial component is decreased but there is an additional
component to be accounted for. To obtain the magnitude of
this vector we must remember to use the metric tensor com-
ponents. As this vector has only radial and polar components
and the metric tensor is diagonal in these, we need only
multiply each squared component with the corresponding
metric component and add the two to get the squared mag-
nitude of the ψN -force. The general relativistic contribution to
the strength (and direction) of the drive (for the magnetic field
seed) is measured by the gradient of the ψN -potential while
the total strength of the drive is calculated from its vector
product with the entropy gradient [see equation (10)]. Since
the ψN -force as computed here is given by the gradient of the
ψN -potential, we need to use the corresponding components
of the contravariant Kerr metric tensor. The squared
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magnitude is then [17]

ρ χ
θ θ

θ θ

θ θ

= − − + +

+ −

− +

ψ
⎡⎣

⎤⎦
( )

F
R

r Rr a r Ra r

a r

Rra a

2 cos 2 4 cos

cos 2 3 cos

2 cos cos . (20)

N
2

2

6 4
6 5 2 4 2 3 2

4 2 2 2

4 4 6 4

This is a complicated expression and there is no apparent
unique value of θ for which it is maximum, as the value will
be r-dependent. As such, it is worth considering the special
cases θ π π= 0, , 2.

At the poles (θ = 0 or π)

=
−

+ − +
ψ ( )

( )
( )

F
R r a

r a r Rr a2
. (21)N

2

2 2 2 2

2 2 3 2 2

It is obvious that there is a decrease of the ψN -force here
compared with the Schwarzschild black hole value

= −ψ ( )( )F R r r R2N
2 2 3 at the corresponding distance as the

numerator is decreased and the denominator increased and the
reduction is more for larger a. Whereas, at the surface of the
Schwarzschild black hole this would become infinite, for the
Kerr metric it would tend to R1 2 2.

At the equator (θ π= 2) the ψN -force reduces to

=
− +

−
ψ

( )
( )

F
R r Rr a

r r R

2

2
. (22)N

2

2 2 2

4 2

It is to be noted that this term blows up at =r R2 , which lies
in the accessible region > +r r , while it would come on the
horizon for the Schwarzschild metric. As the spin is
increased, the distance from the singular place increases,
going to a maximum of twice the horizon in the extreme case.
Of course, this entire region is inaccessible to comparison
with the Schwarzschild drive, as it lies beyond the accessible
range for it. Hence the drive is much stronger outside the
horizon for the Kerr drive on the equator, than for the
Schwarzschild drive. On the other hand, the numerator con-
tains the term − +r r( )2, which will become zero at the hor-
izon. Hence the force disappears there. At the extreme case,

the force goes as − −⎡⎣ ⎤⎦( ) ( )R r R r r R22 2 4 . Going through

the analysis in this case, it can again be seen to be zero at the
horizon.

We can then conclude that on the surface of the hole this
force is zero, which is consistent with the fact that the
Hawking temperature of an extreme black hole is zero. Does
this mean that our drive is negligible for the Kerr black hole?

On the contrary, for a Kerr black hole the term −( )r R2
2
in

the denominator makes it much more effective than for the
Schwarzschild black hole.

To visualize the ψN -force magnitude more easily we
have plotted it for four different values of β = a Rc, namely
0, 0.3, 0.7 and 1.0. These are shown in figures 1 (a)–(d). For a
fixed distance, the maximum of the force appears near of π 2.

The variation of the force with a is generally displayed for
specific values of θ in figure 2.

5. Summary and discussion

A special relativistic explanation for magnetic field seed
generation in a plasma [4, 5] had been followed up by us with
a general relativistic explanation [8]. There it had been sug-
gested that the proposal should be extended to the rotating
black hole. This suggestion has been pursued here. It was
noted that while the seed generation would be reduced for a
charged black hole, totally disappearing for the extreme case,
this would not apply for a rotating black hole. One might
wonder why this should be so. The answer is that the charge
acts in the opposite way to the mass. This fact had been noted
by Maxwell himself, who constructed complicated mechan-
ical models of the aether to explain it [18]. It comes out
sharply in relativity, where charges give a repulsive effect on
neutral matter [19]. The spin, on the other hand, causes only
frame dragging and hence does not decrease the gravitational
force.

We have qualitatively argued that no substantial reduc-
tion is to be expected for the rotating black hole, and given an
estimate for the effect at various values of the parameters.
Notice that the frame dragging changes a straight line into a
conical spiral and hence mixes the radial dependence with a
polar angle dependence. The relevant distance for
Schwarzschild is measured in terms of R2 , but for Kerr is +r ,
which could be as low R. The relativistic drive can be cal-
culated from the vector product of the gradient of the ψN
-potential (19) and the gradient of the entropy of the plasma.
Its exact value will depend on the thermal properties of the
plasma, but its existence is due exclusively to the ψN
-potential (19) or the ψN -force (20). Thus, comparing the
drive with the same effect in a Schwarzschild spacetime, the
ratio of the two drives at the appropriate distances is the
relevant quantity. Consequently, the Kerr drive would work
slightly better than the Schwarzschild drive. As had been
stressed in our earlier paper, closer to the black hole the drive
gets enhanced. Light goes into circular orbit around a
Schwarzschild black hole at only 1.5 times the horizon dis-
tance. Outside that we could still get orbits that would not
necessarily fall in very quickly. For the Kerr black hole the
orbits are more complicated with elliptical paths that can
come closer in, involving polar angle changes as well.
However, that relatively stabilizes the orbits, as they tend to
oscillate northward and southward as well, instead of only
going inward [20]. This effectively stabilizes the orbit for a bit
longer.

It is of particular relevance to remark that the plasma in
the accretion disc is likely to lie on (or near) the equator and
not at an oblique angle to the axis of rotation. As such, though
the Kerr drive totalled over the entire solid angle may be only
slightly larger than for the Schwarzschild, the plasma about a
Kerr black hole receives a stronger ‘kick’ than it would
around the Schwarzschild black hole. The fact that our
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approximation is limited makes it difficult to estimate the
extent of enhancement.

For completeness it is worth discussing, also, the force
for the charged Kerr black hole. The only difference here is

that g
oo
has a GQ c2 4 subtracted inside the bracket and Δ has it

added. The black hole radius is now at

= + − +
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r

GM

c

a c GQ

G M
1 1 , (23)

2

2 2 2

2 2

The extreme case arises when the discriminant is zero. As
such, the radius is again just the mass of the extreme black
hole in gravitational units. The calculation follows exactly the
same procedure as for the uncharged case. Since the Δ does
not enter into the ψN -potential, we only have to account for
the change in the g

oo
for the gradient and then incorporate the

modification of Δ for the squared magnitude. The result is an
addition of

θ−
⎛
⎝⎜

⎞
⎠⎟

GQ

c
r

a

c
cos (24)

2

4
2

2

2
2

2

to the expression in the square brackets in equation (20).
The more precise calculation with the back-reaction

included would be worth obtaining, despite the fact that we
are using broad guesses in any case, as we do not know the
precise nature of the plasma or the black hole being investi-
gated. The point is that it could, in principle, substantially
diminish or enhance the drive, despite the intuition based on a
linear theory that the difference would not be much. Still
better would be simulations based on numerical relativity
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Figure 1. The normalized magnitude of the ψN -force (20) is plotted in terms of the normalized distance r R and θ, for different values of the
normalized angular momentum per unit mass β = a R. (a) The Schwarzschild case with β = 0. (b) β = 0.3. (c) β = 0.7. (d) The extreme
case of β = 1.

Figure 2. The normalized magnitude of the ψN -force (20) for a given

distance =r R 2.3 in terms of θ and β = ( )a Rc . The dark blue
plane is the Schwarzschild drive and the light blue curve is the Kerr
drive. The Kerr drive could be smaller or greater than the
Schwarzschild drive depending of the value of β = a R. For ≠a 0,
the Kerr drive in the poles is always smaller than the Schwarzschild
drive, while on the equator the Kerr drive is always greater than the
Schwarzschild drive. Notice how the maximum of the Kerr drive is
around π 2.



calculations for the field generated in the plasma of an
accretion disc by a fast spinning black hole for different mass
black holes. We leave that work to experts in the field of
numerical relativity.
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