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a b s t r a c t 

The present work proposes a novel Network Optimization problem whose core is to combine both net- 

work design and network construction scheduling under uncertainty into a single two-stage robust op- 

timization model. The first-stage decisions correspond to those of a classical network design problem, 

while the second-stage decisions correspond to those of a network construction scheduling problem 

(NCS) under uncertainty. The resulting problem, which we will refer to as the Two-Stage Robust Net- 

work Design and Construction Problem (2SRNDC), aims at providing a modeling framework in which 

the design decision not only depends on the design costs (e.g., distances) but also on the correspond- 

ing construction plan (e.g., time to provide service to costumers). We provide motivations, mixed integer 

programming formulations, and an exact algorithm for the 2SRNDC. Experimental results on a large set 

of instances show the effectiveness of the model in providing robust solutions, and the capability of the 

proposed algorithm to provide good solutions in reasonable running times. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction and motivation 

The construction of transportation network systems usually

consists of two stages: (i) the strategic network design stage, in

which the structure and the composition of the network are de-

fined; and (ii) the construction planning stage, in which a schedule

of the construction process in a given time span is established. In

other words, in the first stage, the edges of the network to be con-

structed are optimally selected (along with attributes such as ca-

pacities), and in the second stage, a schedule for constructing the

edges in accordance with the available resources is chosen. 

The problems appearing in the first stage fall within the classifi-

cation of typical Network Design (ND) problems, and a broad body

of literature is available (for a recent reference see [22] ). Classical

examples of ND problems are the minimum spanning tree, MST,

problem and the Steiner Tree problem. ND decisions are usually

made taking into account data such as geographical distances. Such

data is known with complete certainty at the moment of the deci-

sion taking, and they are unlikely to change in later stages. 

Conversely, the Network Construction Scheduling (NCS) prob-

lem of the second stage has been scarcely investigated (see [3] ).

However, the NCS deserves attention since it defines how and
∗ Corresponding author. 
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hen different elements of the network become available (i.e., how

nd when the users can access the network) and has a signifi-

ant impact on the resource requirements of the construction plan.

onsequently, NCS affects service revenues as well as construction

osts and, therefore, the intrinsic uncertainty of the data (weather

onditions, labor efficiency, supplies availability) needs to be taken

nto account. 

Moreover, in order to provide a reasonable performance under

ifferent situations, including adverse conditions, we believe that

etwork construction must consider the network design and the

onstruction schedule decisions jointly. This approach allows to

void significant inefficiencies during construction caused by the

trict minimization of the network design costs. 

Note that the previous setting is not the only situation in which

oordinating network design and construction planning provides

ignificant improvements over their separate resolution. For in-

tance, networks subject to frequent disruptions (e.g. disasters) are

ikely to benefit from considering the tactical decisions (recon-

truction of the network after disruptions) during the design pro-

ess. In such a case, the network should be designed weighting

onstruction costs, possible reconstruction costs, and the cost asso-

iated to the deprivation of service until reconstruction. Therefore,

he inherent uncertainty associated to disasters must be accounted

or. 

Two well-known approaches for dealing with uncertainty in

ptimization are Two-Stage Stochastic Optimization (2SSO) and

http://dx.doi.org/10.1016/j.cor.2016.12.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
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obust Optimization (RO). In 2SSO (see [9] ) the solutions are built

n two stages. In the first stage, a partial collection of decisions

s defined and completed later on (in the second stage), when

he actual data is revealed. Hence, the objective is to minimize

he cost of the initial (first-stage) decisions plus the expected

ost of the recourse (second-stage) decisions. The quality of the

olutions provided by this model strongly depends on the accuracy

f the random representation of the parameter values (such as

robability distributions) that estimate the second-stage expected

ost. Nonetheless, sometimes such accuracy is not available, so the

se of RO models dealing with deterministic uncertainty arises as

 suitable alternative (see [7,8,17] ). On the one hand, these models

o not require assumptions about the distribution of the uncertain

nput parameters; but on the other hand, they are usually meant

or calculating single-stage decisions that are immune (in a sense)

o all possible realizations of the parameter values. 

A novel alternative that combines RO and 2SSO is Two-stage

obust Optimization (2SRO). As in RO, no stochasticity of the pa-

ameters is assumed and, as in 2SSO, decisions are taken in two

tages. In this case, the cost of the second-stage decision is com-

uted by looking at the worst-case realization of the data. There-

ore, the goal of 2SRO is to find a robust first-stage solution that

inimizes both the first-stage cost plus the worst-case second-

tage cost among all possible data outcomes. 2SRO constitutes a

ather generic classification of models; for references on different

SRO settings we refer the reader to [6,23] . 

The core of this paper is to combine both network design and

etwork construction under uncertainty into a 2SRO model. The

rst-stage decisions correspond to those of a classical ND prob-

em, while the second-stage decisions correspond to those of a NCS

nder uncertainty. The resulting problem, which we will refer to

s the Two-Stage Robust Network Design and Construction Prob-

em (2SRNDC), aims at providing a modeling framework in which

he design decision not only depends on the design costs (e.g. dis-

ances), but also on the corresponding construction plan. In other

ords, an optimal first-stage designed network, say N 

∗, not only

nsures efficiency with respect to the design cost but it also en-

ures that the induced second-stage construction cost will be, in

he worst case, as cheap as possible. 

Among the possible 2SRNDC formulations, this paper focuses on

he case in which a spanning tree has to be constructed and the

cheduling decisions try to minimize the time before users have

ccess to the network. The scheduling objective is represented as

he sum of connection times to a central node (e.g. depot or ser-

ice provider). The resulting problem will be referred to as the

wo-stage Robust Spanning Tree Sum of Connection Times prob-

em (2SRSTSCT). 

.1. Our contribution 

The contribution of this paper is threefold. First, we contribute

o the new field of problems dealing with network construction

cheduling by providing a model that combines both stages of de-

ision (design and construction). Second, we analyze the uncer-

ainty introduced by construction, departing from the classical ap-

roach that associates uncertainty to network design. This is a

ovel approach as the source of uncertainty introduces a secondary

ptimization problem instead of splitting the decision in two de-

ision stages. And third, we provide an algorithmic framework to

ackle this new type of problems. Such a framework has been tai-

ored for a particular version of the problem, but this exposition

tresses that the proposed algorithm can be adapted to other vari-

nts with a different first-stage network design problem or a differ-

nt second-stage scheduling problem. The version of the problem

onsidered in this work corresponds to essential versions of both

he first and the second stage. The first stage selects a spanning
ree. The second stage orders the construction of the edges of the

panning tree while minimizing the average connection time from

 central node (the depot or service provider) to the nodes of the

etwork (customers). The formulation of the scheduling problem

as been shown to resemble a single machine scheduling problem

ith sum of completion times objective (see [3] ). 

.2. Previous work 

We now provide a brief review of recent publications deal-

ng with ND combined with multi-period scheduling decisions and

ith ND combined with 2SRO. 

etwork construction scheduling problems. The model studied in

21] corresponds to an infrastructure restoring problem in which

he goal is to locate a set of work groups to install additional arcs

nto a disrupted network, with the aim of enabling the flow of a

ommodity from supply to demand nodes. A Mixed Integer Pro-

ramming (MIP) formulation is proposed, reduction techniques are

evised, heuristic procedures are designed, and extensive numeri-

al results on a set of realistic instances are reported. 

In [5,13,15] the authors study the problem of completing a net-

ork (mainly by adding new edges) in T periods ensuring that

n each period t ∈ { 1 , . . . , T } an optimally designed sub-network,

 

∗( t ), is obtained from the network completed up to that period.

n [13] , a minimum spanning tree must be solved at each period;

n [5] , a shortest path has to be found at every t . Finally, in [15] ,

 

∗( t ) corresponds to an allocation of flow that ensures a maximum

ow between a fixed pair of nodes. Formulations, heuristic and ap-

roximation algorithms, reduction techniques, and computational

esults are reported. 

A more recent general framework for integrating network de-

ign and scheduling decisions is proposed in [20] . This new ap-

roach generalizes the model previously proposed in [21] . In this

ase, at each period, the performance of the network expansion

trategy is evaluated with respect to different network models:

aximum flow, minimum-cost flow, shortest path, and spanning

ree. Moreover, two types of objective functions are considered:

 cumulative objective (which aims at optimizing the weighted

etwork performance over the time span), and a threshold objec-

ive (which aims at minimizing the time needed to reach the pre-

efined performance value). 

Another alternative to combine network design and schedul-

ng decisions corresponds to the Network Construction Scheduling

roblem (NCS) defined in [3] . In the NCS, the edges of a network

eed to be constructed in order to provide connectivity between

 node (the depot), and the remaining nodes (the customers). The

bjective is to obtain a construction order for the selected edges

hat optimizes a metric associated to the time required to connect

 given node (the service provider) to every other node of the net-

ork. 

This formulation allows the use of different scheduling objec-

ives, like the minimization of the weighted or unweighted sum

f completion times (equivalent to minimizing average connection

imes) [3] , the minimization of the maximum lateness (equivalent

o minimizing the maximum delay with respect to the due date

f each node), or the minimization of the number of tardy nodes

equivalent to minimizing the total number of unfulfilled contrac-

ual dates) [4] . These objectives describe problems in which the

onnection time between a source of service (the depot) and the

emaining nodes (the customers) is critical. 

In this work the scheduling decision falls within the NCS frame-

ork, and we consider the minimization of the average time re-

uired to connect the nodes, which is equivalent to the unweighted

um of completion times. This objective constitutes a valid con-

truction performance when no additional information is available
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or when the connection of each node is considered equally impor-

tant. 

The practical pertinence of addressing the construction phase

of transportation and supply network systems has been stressed

in all the aforementioned papers. However, previous work has not

considered the uncertainty associated to construction times in the

construction phase. Furthermore, scheduling decisions after disrup-

tions or over long periods of time are likely to be affected by un-

certainties that should be incorporated in order to obtain an ap-

propriate scheduling planning. This paper is, to the best of our

knowledge, the first attempt to provide a decision framework for

the design and construction scheduling of networks with uncer-

tainty in the later phase. 

Two-stage robust optimization for network design. Robust Network

design models involving decisions taken in two stages are not new.

The common setting considers that the design process is split into

two phases: a partial network is designed in a first phase and,

once the uncertainty is revealed in the second phase, the design

is completed. Examples of Two-stage Robust Optimization for Net-

work Design can be found in [11] (where formulations and algo-

rithms for different variants of the two-stage shortest path prob-

lem are given), and [1] (where the authors present properties and

exact algorithms for robust two-level network design problems).

Further examples can be found in [2] . In these problems, uncer-

tainty, which is typically modeled by means of scenarios or inter-

val data, is associated with the design costs or the composition of

the network. 

The decision making setting discussed in this work differs from

the setting of the aforementioned papers. Here, the second stage

corresponds to ascertaining the construction order of the network

designed in the first stage, and the uncertainty is associated with

the construction times. 

2. The two-sage robust network design and construction 

problem 

2.1. General framework: the 2SRNDC 

Let us assume an existing or potential network G = (V, E) ,

which is considered to be incomplete and, therefore, it does not

operate according to some given requirements. One can say that

the network is initially incomplete or it became incomplete due to

a natural disaster, a massive failure produced by an intentional or

unintentional phenomenon, demographic changes, etc. New con-

nections (edges) can be constructed within (or added to) the net-

work, and/or the capacity of some of the existing connections can

be increased . Both the construction of new connections and the ca-

pacity expansion of the existing ones have to first be designed ac-

cording to some performance criterion f ( ·) and topological and/or

operative requirements represented by X (G ) . This results into an

expansion policy embedded in a network X . Once this network has

been designed, decision makers need to establish how X will be

constructed along the time span T . Since the expansion decisions

are to be implemented in a later stage, it is natural to think that

the cost of this implementation is not currently known with com-

plete certainty. An alternative to modeling uncertainty in such a

context is using a set of discrete scenarios �, in which each sce-

nario ω ∈ � is characterized by a given realization of expansion

resources (time, cost, etc.). For each scenario ω ∈ �, the construc-

tion scheduling decisions Y 

ω must be decided considering a per-

formance criterion g ( ·, ω, X ) and satisfying a set of requirements

represented by Y(G, X ) . 

 

Our goal is to find a network design policy X 

∗ such that 

 

∗ = arg min 

X ∈X (G 0 ) 

{
f (X ) + max 

ω∈ �
min 

Y ω ∈Y(G 0 , X ) 
g(Y 

ω , ω, X ) 

}
. (RNDC)

The policy defined by X 

∗ not only ensures efficiency with re-

pect to the design cost (due to the minimization of the first-stage

bjective), but it also ensures that the induced second-stage con-

truction scheduling cost will be, in the worst case, as cheap as

ossible. 

The robust network design construction problem (RNDC) is

uite general, since the expression X (G ) may restrict the solu-

ion to be a spanning tree, a Steiner tree, a Hamiltonian tour or

ny other network topology. Likewise, the constraints embodied by

(G, X ) can impose many different conditions to the construction

chedule, and similar statements can be made for the functions

 ( X ) and g ( Y 

ω , ω, X ). The particular variant of the RNDC considered

hroughout this paper is described and formulated in the remain-

er of this section. 

.2. The 2SRSTSCT: definition 

The problem addressed in this paper forces X to be a spanning

ree in G , and forces Y 

ω , ∀ ω ∈ �, to be an order for construct-

ng the n − 1 connections encompassing X . The performance of X

s calculated as the sum of the design cost of each of the edges

hat comprise it, while the performance of Y 

ω is calculated as the

otal completion time, i.e., the sum of the time that each node in

 needed to wait before being connected to a specific node, the

epot. This version of the (RNDC) will be coined Two-stage Robust

panning Tree Sum of Connection Times problem (2SRSTSCT). We

ow provide an MIP formulation for this version of the 2SRSTSCT. 

We are given a set of nodes V that must be connected to a given

oot node r ∈ V (the depot), using a subset of the edges defined by

he set of potential connections, E . There is a design cost function,

 : E → R 

+ , such that d e corresponds to the cost of using edge e ∈
 to establish the connected network. 

Let x ∈ {0, 1} | E | be a binary vector such that x e = 1 if edge e ∈
 belongs to a spanning tree of G , and x e = 0 otherwise. Therefore,

he set X (G ) can be defined as 

 (G ) = { x ∈ { 0 , 1 } | e | | x induces a spanning tree on G }; (X )

ence, a spanning tree T on G is defined as T ≡ { e ∈ E | x e = 1 } . For

 given x ∈ X (G ) , the cost design function is 

f (x ) = 

∑ 

e ∈ E 
d e x e . 

For a given first-stage feasible spanning tree encoded by x ∈
 (G ) , and a given scenario ω ∈ �, the second-stage problem cor-

esponds to the NCS. In other words, it corresponds to a con-

truction scheduling for x with minimum average completion time;

uch problem can be formulated as follows. 

Let y = 

(
y 1 , . . . , y ω , . . . , y | �| ) be a collection of binary vectors

 

ω ∈ { 0 , 1 } | E|×(| V |−1) , defined as follows. For each ω ∈ � and k =
 1 , . . . , | V | − 1 } , y kω 

i j 
= 1 if edge e ∈ E is the k th constructed arc

hen scenario ω ∈ � is realized, and y kω 
i j 

= 0 otherwise. There is

 time construction function c : E × � → R 

+ such that c ω e corre-

ponds to the time for constructing edge e ∈ E if scenario ω ∈ �

s realized. 

For a given scenario ω ∈ � and a given designed network

 

′ ∈ X (G ) , a feasible construction scheduling, induced by a vector

 

ω , must be established such that the edges of x ′ are constructed

equentially and the first constructed edge is connected to the root

 . Therefore, the set Y(G, ω, x ′ ) can be defined as: 

(G, ω, x 

′ ) = { y ω ∈ { 0 , 1 } | E|×(| V |−1) | 
y ω is an ordered completion of x 

′ starting from r} (y )
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(a) Example of G (b) Example of x′ (c) First 20 constructed

links

(d) Complete construction

of x′

Fig. 1. Examples of an instance and solutions of the 2SRSTSCT. 
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or every ω ∈ �. For a given y ω ∈ Y(G, ω, x ′ ) , the construction cost

nder scenario ω is provided by 

g(y ω , ω, x 

′ ) = 

1 

| V | − 1 

| V |−1 ∑ 

k =1 

∑ 

e ∈ E| 
x ′ e =1 

( | V | − k ) c ω e y 
kω 
e . 

otice that y ω , ω ∈ �, represents a sequence of edges. After the

onstruction of each edge, an additional node is connected to the

oot node r and, thus, the construction time of the k th constructed

dge contributes to the connection time of ( | V | − k ) nodes. Conse-

uently, the above function computes the average connection time

f the nodes in V . 

For a better understanding of the problem, let us examine

ig. 1 . Fig. 1 (a) shows an example of G , i.e., an incomplete graph

n which no connection has been established yet (only potential

onnections are known and they are displayed by dotted lines).

ig. 1 (b) shows an example of the designed network. As required

y the model, x ′ induces a spanning tree on G , in which the node

epresented by a triangle corresponds to the root node. For a fixed

cenario, say ω 

′ ∈ �, Fig. 1 (c) shows the network constructed up

o the 20th connection, i.e., with 20 built edges, allowing to con-

ect 20 nodes to the root (there are still 29 nodes waiting to be

eached). Finally, Fig. 1 (d) shows the completely built network,

hich coincides with x ′ . 
An MIP formulation for the 2SRSTSCT is established by the fol-

owing set of constraints that combine ( X ) and ( y ) and impose the

inimization of the worst-case performance among different sce-

arios, 

 RSTC = min f (x ) + θ (RSTC.1)

s.t. θ ≥ g(y ω , ω, x ) , ∀ ω ∈ � (RSTC.2)

x ∈ X (G ) . (RSTC.4)

y ω ∈ Y(G, ω, x ) , ∀ ω ∈ � (RSTC.3)

bjective (RSTC.1) minimizes the sum of network design cost plus

he cost of the second-stage for the worst case scenario, θ , cal-

ulated in (RSTC.2) . (RSTC.4) defines the domain of the first-stage

ariables x and (RSTC.3) the domain of the second-stage variables

 . 

It is possible to define an MIP model of (RSTC.1) –(RSTC.4) , with

 full compact description of (RSTC.2) and (RSTC.3) . This formula-

ion will be referred to as extended formulation , and it is provided

n Appendix A.1 . The proposed model is based on a directed repre-

entation of G , therefore, the first-stage variables x are associated

o arcs instead of edges. This allows the use of the so-called di-

ected cut-set inequalities to describe (RSTC.4) , although such con-

traints are exponential in number, they enable the design of effi-

ient separation procedures (see Section 3 ). 
Please note that while the previous formulation corresponds to

 specific selection of first- and second-stage problems, the frame-

ork described by the (RNDC) is sufficiently general to consider al-

ernative topologies, X and Y, and objectives in each of the stages,

 ( ·) and g ( ·). 

.3. The 2SRSTSCT: relations with other problems 

The 2SRSTSCT is equivalent to several other combinatorial opti-

ization problems under some conditions. These relationships are

sed in the development of the proposed solution method and also

rovide complexity results for the problem in hand. 

First, if the second-stage costs are negligible or the construction

osts of the edges are identical, then Problem 2SRSTSCT is equiva-

ent to the problem of finding a minimum spanning tree. 

Second, if there is one scenario for the construction stage, the

rst-stage costs are negligible, then Problem 2SRSTSCT is equiv-

lent to the flowtime network construction problem (FNCP) dis-

ussed in [3] . The FNCP has been shown to be strongly NP-hard

sing a reduction from the SET COVER problem (see [3] ) and, thus,

he 2SRSTSCT is also strongly NP-hard. 

Third, if the network is a tree and there is one scenario for the

onstruction stage, then the 2SRSTSCT is equivalent to minimizing

he total completion of jobs (the edges) with out-tree precedence

onstraints (the path to the depot) in a single machine. The afore-

entioned problem can be solved in O ( n log n ), (see [10] , pp. 73–

7). 

The first and the third relationships are used in the heuristic

eneration of additional inequalities, Section 3.2 , and in the primal

euristic, Section 3.3 . 

The second relationship identifies the NP-hardness status of the

roblem and it is used in the matheuristic generation of inequali-

ies described in Section 3.2 . 

. Algorithmic framework 

The extended formulation described in the previous section al-

ows to solve the problem within a branch-and-cut algorithm. Such

n algorithm is based on the separation of the cut-set inequalities

RSTC.4) underlying x ∈ X (G ) (see , e.g., [16] , for further details).

reliminary computational results showed that this approach is in-

ffective even for small size instances. This is mainly due to the

oor quality of the linear relaxation of the second-stage problem

mbodied by (RSTC.2) and (RSTC.3) . 

Therefore, in order to solve the 2SRSTSCT in a more effective

anner, we put forward an alternative approach that avoids the

se of second-stage variables and constraints by iteratively intro-

ucing constraints that describe the corresponding second-stage

unction, θ . The resulting branch-and-cut algorithm relies only on

rst-stage variables and combines both types of inequalities. 
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In the remainder of this section, we outline the novel features

of the proposed method. 

3.1. Approximation of the second-stage objective 

For a given solution x ′ ∈ X (G ) at a given node of the branch-

and-cut search tree, let ω 

′ ∈ � be the scenario associated with

the worst-case second-stage objective θ ( x ′ ) ( binding scenario), and

let y 
′ ω ′ be the corresponding optimal schedule. Using this nota-

tion, and according to the formulation (RSTC.1) –(RSTC.4) , the con-

straint 

θ ≥
| V |−1 ∑ 

k =1 

∑ 

e ∈ E 
( | V | − k ) c ω 

′ 
e y ′ kω 

′ 
e x e , ( θ-C)

ensures a valid lower bound on θ . This constraint guarantees that

if x ′ corresponds to the optimal solution, then θ should be θ ( x ′ )
(see [18] , for further details). 

For any x ′ , constructing ( θ-C) requires the coefficients y 
′ ω ′ ,

which correspond to the optimal solution of the NCS problem for

the binding scenario. One can efficiently solve the NCS based on

the following observation: 

Observation 1. (See [3] ) For a fixed solution x ′ ∈ X (G ) and a given

scenario ω ∈ �, the corresponding NCS problem, min { g(y ω , ω, x ′ ) |
y ω ∈ Y(G, ω, x ′ ) } , can be solved in O(n log n ) time. 

Proof. Consider that the edges e ∈ E | x ′ e =1 are jobs and the values

c ω e are the processing times. The tree induced by x ′ defines natural

out-tree precedence constraints for the jobs. Minimizing the total

completion time of n jobs with out-tree precedence constraints can

be done in O(n log n ) time (see [10] pp. 73–77). �

Clearly, for any given x ′ , ( θ-C) can be ascertained in

O(| �| n log n ) time using Observation 1 by solving the correspond-

ing NCS for each of the | �| scenarios and selecting the binding

one. This corresponds to the basic scheme for generating ( θ-C) in-

equalities, and it works only if the solution, x ′ , induces a spanning

tree. 

Note that, at the beginning of the optimization process, the

model is initialized with the constraint induced by the solution of

the minimum spanning tree on G . 

3.2. Heuristic generation of ( θ-C) constraints 

As already said, the previous approach is valid only when

the solution, x ′ , defines a feasible first-stage solution. In order to

improve the overall performance of the algorithm, we propose the

early identification of first-stage solutions whose corresponding

( θ-C) inequalities are likely to define tight bounds on θ . Such

schemes are described below. 

Rounding heuristic. At a given node of the branch-and-cut search

tree, let ˜ x be the corresponding solution of the linear relaxation

problem (LP). If ˜ x is fractional, one can still generate a valid

( θ-C) constraint by heuristically rounding ˜ x . To do so, we first

solve the MST on G with edge costs ˜ c defined by 

˜ c e = c e (1 − ˜ x e ) , ∀ e ∈ E, 

and, afterwards, the corresponding ( θ-C) constraint is added to

the model. 

These additional constraints are likely to be very similar to pre-

viously generated ones. Therefore, we impose a condition such that

the constraint induced by ˜ x ′ is added if ˜ x ′ is orthogonal with re-

spect to the current incumbent solution, say x̌ . Concretely, we add

the inequality induced by ˜ x ′ if the following equation holds: 

�
(

˜ x 

′ , ̌x 

)
= 

∑ 

e ∈ E 

∣∣ ˜ x ′ e − x̌ e 
∣∣ ≥ ν, 
.e., ˜ x ′ e and x̌ e must induce spanning trees that differ in at least ν
dges. This ensures that the new inequality is more likely to cut

ff a solution that lies in a different area of the search space. In the

ong run, this accelerates the overall performance of the algorithm,

ince the search space is shrunk more effectively. 

atheuristic ( θ-C) -generation. Similar to the previous case, we

ave designed a technique for generating cuts when 

˜ x is partially

ractional. These inequalities are based on: (i) optimally finding the

orst-case NCS on a partial graph induced by ˜ x , say ˜ G ( ̃ x ) ; (ii) ap-

roximating the worst-case NCS on the remaining graph G \ ˜ G ( ̃ x ) ;

nd (iii) constructing a valid inequality for the original problem.

ence, one can think about the proposed constraint generation

ethod as a mathheuristic constraint generator in which a partial

olution is extended to create a complete solution by optimizing

ts second-stage cost. 

The matheuristic-based method can be described as follows: 

1. First, identify T ( ̃ x ) , the set of edges of the connected compo-

nent rooted at the depot verifying ˜ x e = 1 . 

2. Second, for each scenario ω ∈ �, solve the NCS of the partial

tree induced by T ( ̃ x ) (using the result in Observation 1 ). 

3. Third, collapse T ( ̃ x ) and map it into a single node r T ( ̃ x ) . For

each scenario ω, the optimal NCS solution for the remaining

graph (with r T ( ̃ x ) as root node) is computed using a branch-

and-bound procedure as in [3] . 

4. Fourth, for each scenario, let y ω be the solution obtained by

merging the construction order found in Step 2 with the con-

struction order found in Step 3 for scenario ω. 

5. Finally, find the binding scenario ω 

′ induced by the solutions

obtained in Step 4, and check whether the corresponding

( θ-C) constraint is satisfied before its inclusion in the current

model. 

The previous method is able to generate good heuristic solu-

ions under the assumption that those arcs already fixed to inte-

rality by the LP are likely to be very important (and thus, they

eed to be scheduled earlier). Step 3 requires the resolution of an

P-hard problem for each scenario. Hence, the applicability of the

ethod is highly related to the ability to optimally solve the re-

aining subproblem, and, therefore, we only solve the problem

hen the number of nodes not spanned by T ( ̃ x ) is equal to or

maller than some predefined constant μ. 

In Step 3, the sub-problem is solved using a branch-and-bound

ethod that explores the search tree using a depth-first search ex-

loration scheme. A solution is represented as a sequence iden-

ifying the order in which nodes are reached. A branching deci-

ion corresponds to appending a node to the sequence. Note that

he edge used to reach a node corresponds to the shortest edge

hat connects it to an already reached node. In order to prune

he search tree, the lower bounds and dominance rules proposed

n [3] are used. Furthermore, the implementation uses some ad-

itional dominance rules, which are described below. Please note

hat the current branch-and-bound does not make use of the

ixed exploration scheme proposed in [3] in order to reduce the

emory required by the matheuristic. 

The new dominance rules consider the relation between the

cheduling part of the problem and the one machine total com-

letion time scheduling problem, which can be optimally solved

sing the Shortest Processing Time (SPT) rule. As noted in [3] , the

olution of the second-stage optimization problem corresponds to

 sequence of nodes in connection order. The edge used to connect

 node corresponds to the smallest-cost edge connecting a previ-

usly connected node and the newly connected one; hence, the se-

ected edges induce a spanning tree. Notice that the second-stage

ptimization problem can be seen as a one machine total comple-

ion time scheduling problem in which the processing time of the
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obs (all of the nodes with the exception of the depot) depends

n the preceding jobs in the sequence. Under some conditions, the

PT rule still applies to each partial ordering of jobs. Based on the

revious observation, it is possible to derive two properties that

ne optimal sequence S ( v 1 = 1 , v 2 , . . . , v | V | −1 ) is to fulfill. 

roposition 1. There is an optimal sequence S in which each pair of

onsecutive nodes, v i and v i +1 , fulfils at least one of the two following

onditions: (i) the cost of the edge used to connect node v i is smaller

han the cost of the edge used to connect node v i +1 ; or (ii) the other

ndpoint of the edge used to connect node v i +1 is node v i . 

roof. The first condition corresponds to the SPT rule, and can be

roved using exchange arguments, see [12] . Condition (ii) intro-

uces an exception in order to account for the additional charac-

eristics of the problem. �

roposition 2. There is an optimal sequence S in which the cost of

he edge used to connect node v i is lower than the cost of the edge

sed to connect node v j (with i < j), unless the other endpoint of

he edge used to connect node v j is one of the nodes v i +1 , . . . , v j−1 

r node v i is the endpoint of an edge used to connect some node in

 i +1 , . . . , v j−1 . 

roof. If the exception does not hold, an exchange between nodes

 i and v j reduces the total cost without changing the cost of the

dges used to connect any of the nodes. Hence, the exchange ar-

ument suffices to proof the proposition. �

These propositions are verified during the branch-and-bound

ree by reducing the list of candidate nodes to append to the se-

uence to those nodes that fulfill the above conditions. It is also

ossible to verify that some nodes that do not belong to the se-

uence under construction cannot fulfill Proposition 1 . If such a

ode is identified, the partial solution under construction is not

onsidered for branching. 

The application of these propositions, in addition to the previ-

us dominance rules and lower bounds described in [3] , allows us

o solve instances with up to 40 nodes in less than a second. 

.3. Further enhancements 

ranching rule. In order to further improve the lower bounds, we

esigned an ad-hoc branching strategy. We assume again that ˜ x is

he LP solution at the current node of the branch-and-cut tree; let

 ( ̃ x ) be the connected subgraph, rooted at the depot, induced by

he edges e verifying ˜ x e = 1 . Let δ( G ( ̃ x ) ) be the set of edges with

n endpoint in G ( ̃ x ) and the other endpoint outside the subgraph.

ur branching rule forces to branch on x (kl) ∗ variable, where edge

 : { k, l } ∗ corresponds to 

 k, l} ∗ = arg min 

{ k,l}∈ δ( G ( ̃ x ) ) 
| ̃  x k,l − 0 . 5 | . 

ntuitively, this branching rule helps to define search branches

haracterized by disjoint connected components rooted at the de-

ot, which are likely to yield a more efficient enumeration and,

herefore, a much better performance of the algorithm. 

rimal heuristic. So far, the proposed enhancements mainly focus

n improving the lower bounds along the optimization process.

he final ingredient of our algorithm is a primal heuristic that

elps to find new incumbent (primal) solutions and push down

he upper bounds quickly. Although several ideas were tried, the

implest one turned out to be the most effective. 

The implemented idea follows: (i) Given a fractional solution 

˜ x ,

nd a near integer vector ˜ x ′ by solving an MST on G using ˜ c ; (ii)

alculate Q( ̃ x ′ ) ; and (iii) attempt to set 
(

˜ x ′ , Q( ̃ x ′ ) 
)

as primal so-

ution. Although extremely simple, this idea was effective in pro-
iding reasonable upper bounds in early stages of the optimization

rocess. 

. Computational results 

All the experiments were performed on an Intel Core TM i7

4702QM) 2.2 GHz machine (8 cores) with 16GB RAM. The branch-

nd-cut was implemented using CPLEX 

TM 12.5 and the Con-

ert Technology framework. When testing our branch-and-cut, all

PLEX parameters were set to their default values. 

Regarding the setting of our algorithm, the constant L (see

 θ-C) ) was set to 0, and the value of μ was set to 35 nodes. A

ime limit of 2400 s was imposed in all runs. Two different sets

f experiments were conducted. The first set considers randomly

enerated instances whose topology is similar to street networks.

he second set considers instances derived from the Chilean road

etwork. 

.1. Benchmark instances 

andomly generated instances. These are planar random instances,

n the Euclidean plane, which were generated following the ideas

resented in [14] for the generation of prize collecting Steiner tree

nstances. The topology of these instances is similar to street net-

orks. The underlying graph is defined as follows: (i) n nodes are

andomly located in a one-unit Euclidean square; (ii) an edge e be-

ween two nodes i and j is established if the Euclidean distance

etween them is smaller than α/ 
√ 

n , for a fixed α > 0, and the

raph remains planar. 

Once the topology of the network is defined, design costs are

et as the Euclidean distances, i.e., d e = 

√ (
x i − x j 

)2 + 

(
y i − y j 

)2 
,

 e : { i, j } ∈ E , where ( x i , y i ) and ( x j , y j ) are the coordinates of nodes

 and j respectively. See Fig. 1 for an example of the network ob-

ained with n = 50 and α = 1 . 6 . 

Each arbitrary scenario of edge construction costs is generated

s follows: (i) for each edge e ∈ E , uniformly and randomly gen-

rate a number z ω e in the interval 
[
0 , 

√ 

2 
]
; (ii) the corresponding

onstruction cost c ω e , for each edge e ∈ E , is provided by 

 

ω 
e = ρd e + 

√ 

1 − ρ2 z ω e , 

here ρ ∈ [0, 1] is a user-defined parameter that enables to con-

rol the correlation between design and construction costs. This is

epeated | �| times, which leads to a set � of construction cost

cenarios. 

Instances of this class are defined by three parameters, n, α
nd ρ . In particular, we considered n = { 25 , 30 , 35 , 40 , 45 , 50 , 60 ,

5 , 100 } , α = 1 . 6 (as suggested in [14] ), and ρ = { 0 . 00 , 0 . 25 ,

 . 50 , 0 . 75 } . In our computations, we considered up to 50 scenar-

os which are created in advance. Therefore, when dealing with in-

tances with 15 scenarios, we simply use the first 15 scenarios out

f the 50 scenarios. The same applies, for instance, to 20 scenar-

os. The scenarios are identical for the different values of all other

arameters. By proceeding in this way, it is easier to measure the

mpact of considering a larger number of scenarios. 

Please note that we opted for this scenario generation scheme

or the following reasons: (i) it allows us to concentrate on the re-

ationship between the first- and the second-stage costs, given by

; (ii) it does not require any additional hypotheses on the way

hat results can be interpreted; and (iii) it is simple, but general

nough, to represent any structure of relationships among scenar-

os, while generating algorithmically challenging instances. 

nstances derived from the Chilean road network. In this case, the

nderlying graph is given by the interurban road network that con-

ects the cities in Chile (according to the Chilean government, any
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Table 1 

Comparison between the branch-and-cut approach applied to the extended formu- 

lation and the ( θ-C) -generation approach. 

Extended formulation ( θ-C) -generation 

Size # Solved # Optimal Av. gap # Solved # Optimal Av. gap 

25 23 3 1 .96 24 24 0 

30 20 2 0 .88 24 24 0 

35 17 0 2 .05 24 23 0 .05 

40 12 0 4 .51 24 8 1 .39 
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4  
locality with more than 50 0 0 inhabitants is considered a city). The

resulting network contains 245 nodes and 393 edges. The selected

cities are located from the north end, Arica, down to southern city

of Punta Arenas, from where most of the connections to the (few)

southern most cities are performed via ferries or light aircrafts.

This network was selected for the study because Chile endures dis-

asters (specifically earthquakes) regularly, and thus integrating re-

covery into the network design decision would be beneficial. Fur-

thermore, a subset of the road network was considered in a previ-

ous work for the second stage problem [4] . 

In order to generate smaller instances, we merged nodes us-

ing the following procedure: merge into a single node, or macro

city , any node in which the distance between urban areas is lo-

cated within P kilometers (and remove edges correspondingly). We

considered P = { 5 , 10 , 15 , 20 } , which leads to instances with 203

nodes and 297 edges, 152 nodes and 231 edges, 120 nodes and 185

edges, and 91 nodes and 140 edges, respectively. These aggregated

instances can be regarded as the design problem, in which the con-

struction of the main communication network between population

hubs is solved. 

In this case, design costs are taken as the (Euclidean) length

of every road segment. Construction cost scenarios are calculated

similarly to the case of the ND instances, but the values of z ω e are

taken from the interval [0, max e ∈ E d e ]. For these instances, we

considered ρ = { 0 . 00 , 0 . 25 , 0 . 50 , 0 . 75 } . The instances were labeled

P km- CHILE - ρ . Appendix A.3 provides a representation of the net-

work. 

4.2. Algorithmic performance 

Benefits of the ( θ-C) -generation scheme. In order to evaluate the

benefits of using the constraint generation scheme with respect to

explicitly incorporating the second-stage variables (extended for-

mulation (RSTC.1) –(RSTC.4) ), we solved a subset of the randomly

generated instances using a branch-and-cut approach that sepa-

rates only the cut-set inequalities (extended formulation approach).

Table 1 provides a summary of the comparison between the ( θ-C) -

generation approach and the extended formulation approach. 

For each instance size, we report: (i) the number of instances

in which the algorithm was able to provide a solution within the

imposed time limit; (ii) the number of optimal solutions found

and (iii) the average optimality gaps between the lower and up-

per bounds provided by the algorithm for the instances in which

the algorithm was able to find a solution. The results evidence that

the ( θ-C) -generation approach outperforms the compact formula-

tion both in number of instances solved and in the average opti-

mality gaps reported. Furthermore, note that the gaps provided by

the compact formulation only correspond to the instances in which

the algorithm was able to find a solution (the easiest instances).

According to the limitations of the compact formulation, the rest

of the section only examines the results from the ( θ-C) -generation

approach. 

Influence of algorithmic enhancements. In order to assess the qual-

ity of the heuristic and matheuristic cuts, along with the pro-
osed branching rule, we conducted a computational experiment

sing the set of randomly generated instances. Each instance was

olved using eight different versions of the algorithm, one for each

ombination of presence/absence of a component. The average gap

 

UB −LB 
UB · 100 ) between the reported lower and upper bounds is

sed as the response variable of the experiment. 

The results were analyzed as a repeated measures ANOVA with

hree factors (the components of the algorithm), see [19] , with the

ain characteristics of the instance (size, correlation, and num-

er of scenarios) as confounding factors. The results of the ANOVA

est showed that the introduction of additional matheuristic cuts

as a significant impact on the behavior of the algorithm ( p-value

 10 −16 ), while the remaining characteristics are not statistically

ignificant. An analysis of the residuals showed heteroscedastic-

ty issues. Hence, a non-parametric ANOVA test was conducted in

rder to verify if heteroscedasticity was affecting the conclusions.

he test consists in applying the same repeated measures ANOVA

n a rank transformation of the response variable. This test pro-

ided the same conclusions as the original test. Hence, we are led

o conclude that the analysis and its conclusions are satisfactory. 

Note that, although the impact of the heuristic cuts and the

ranching rule is not statistically significant, they do not have a

egative effect. Furthermore, we observed that these components

rovide better solutions for specific instances of the test bed and,

hus, we decided to maintain them in the implementation of the

lgorithm reported in the remainder of the section. 

nalysis of the results for random instances. Tables 2 and 3 as well

s Fig. 2 provide a summary of the results for the random in-

tances. Table 2 provides an analysis of the results grouped by in-

tance size and number of scenarios (4 instances per group), while

able 3 provides the same results grouped by instance size and

orrelation between the first-stage and the second-stage costs (6

nstances per group). Both tables report the average gap, the aver-

ge running time and the number of optimal verified solutions (if

ny). 

Additional metrics on the behavior of the algorithm like the av-

rage number of cuts generated of each type (cut-sets, ( θ-C) con-

traints, and matheuristically generated ( θ-C) constraints) and the

verage number of explored branch-and-cut tree nodes are pro-

ided in Appendix A.2 . We do not report the number of CPLEX

uts generated because its number is always very small (the largest

umber of cuts provided by CPLEX in any tested instance was 5). 

Table 2 shows an increase in the average gap as the number

f nodes and scenarios grows. Note that, for instances with n ≥
0, the optimality of any solution is verified and the average gap

s significant, which highlights the difficulty of the problem and

hows the limits of the proposed approach to provide and verify

ptimality of the solutions. 

When instances are grouped according to the correlation fac-

or between the first-stage and the second-stage costs, the results

how that the average gap grows when the size of the instance and

he correlation grows, see Table 3 . This pattern is counter-intuitive

nd is further discussed below. 

In order to highlight the influence of the different characteris-

ics of the instances on the solution quality, Fig. 2 reports several

oxplots of the evolution of the optimality gap variation according

o the characteristics of the instances. Each boxplot represents the

verage optimality gaps when instances are grouped in accordance

ith the number of nodes of the network, the correlation between

he costs of the first stage and the second stage, or the number of

cenarios. 

The results show that the algorithm is capable of solving to

ptimality instances with up to n = 35 within the allotted time,

nd provides near optimal solutions (gaps below 0.05) when n =
0 , regardless of the remaining characteristics of the instance. For
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Table 2 

Average gap, average running time of the algorithm for the random instances and number of optimal solutions found (if any). The 

number of optimal solutions found is reported in parenthesis. Instances are grouped according to size and number of scenarios. 

Scen. 5 10 15 20 25 50 

Av.gap Av. Av.gap Av. Av.gap Av. Av.gap Av. Av.gap Av. Av.gap Av. 

n (# opt) time (# opt) time (# opt) time (# opt) time (# opt) time (# opt) time 

25 0 .0 (4) 4 0 .0 (4) 14 0 .0 (4) 21 0 .0 (4) 53 0 .0 (4) 50 0 .0 (4) 105 

30 0 .0 (4) 12 0 .0 (4) 18 0 .0 (4) 27 0 .0 (4) 58 0 .0 (4) 87 0 .0 (4) 245 

35 0 .0 (4) 86 0 .0 (4) 282 0 .0 (4) 248 0 .0 (4) 293 0 .0 (4) 542 0 .3 (3) 1125 

40 0 .0 (4) 1597 1 .0 (2) 1976 1 .0 (2) 2180 1 .7 2400 1 .8 2400 2 .9 2400 

50 6 .0 2400 7 .0 2400 7 .9 2400 7 .8 2400 8 .4 2400 8 .9 2400 

60 10 .7 2400 11 .9 2400 11 .6 2400 12 .9 2400 13 .3 2400 14 .1 2400 

75 17 .9 2400 19 .1 2400 19 .4 2400 19 .6 2400 19 .8 2400 21 .2 2400 

100 27 .3 2400 28 .9 2400 29 .3 2400 29 .3 2400 30 .0 2400 31 .6 2400 

Table 3 

Average gap, average running time of the algorithm for the random instances and number of optimal 

solutions found (if any). The number of optimal solutions found is reported in parenthesis. Instances are 

grouped according to size and correlation. 

Correlation 0 25 50 75 

Av.gap Av. Av.gap Av. Av.gap Av. Av.gap Av. 

n (# opt) time (# opt) time (# opt) time (# opt) time 

25 0 .0 (6) 34 .3 0 .0 (6) 71 .5 0 .0 (6) 24 .2 0 .0 (6) 37 .2 

30 0 .0 (6) 66 .8 0 .0 (6) 92 .5 0 .0 (6) 99 .7 0 .0 (6) 41 .2 

35 0 .0 (6) 149 .2 0 .0 (6) 319 .7 0 .2 (5) 863 .1 0 .0 (6) 387 .9 

40 0 .7 (3) 1863 .7 0 .8 (3) 2079 .3 1 .8 (1) 2329 .8 2 .2 (1) 2363 .3 

45 4 .2 2400 .0 5 .1 2400 .0 6 .8 2400 .0 6 .9 2400 .0 

50 7 .2 2400 .0 7 .5 2400 .0 7 .9 2400 .0 8 .1 2400 .0 

60 11 .2 2400 .0 12 .0 2400 .0 13 .3 2400 .0 13 .1 2400 .0 

75 18 .0 2400 .0 19 .6 2400 .0 20 .0 2400 .0 20 .3 2400 .0 

100 28 .0 2400 .0 29 .6 2400 .0 30 .5 2400 .0 29 .4 2400 .0 

Fig. 2. Optimality gaps for the instances grouped according to their main characteristics (number of nodes, correlation between first-stage and second-stage costs, and 

number of scenarios. 
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arger instance sizes, the performance of the algorithm deterio-

ates. 

The remaining characteristics of the instances have a smaller

mpact on the optimality gaps reported by the algorithm. Note

hat the correlation between the costs of both the first and sec-

nd stage, as previously highlighted in Table 3 , shows a positive

rend (the larger the correlation, the larger the optimality gap). We

ypothesize that the perceived behavior can be explained by the

ay that the underlying network is generated. As one can observe

n Fig. 1 , there are several 3-cliques in which two edges have ap-

roximately the same length, which leads to a similar first-stage

esign cost. Hence, if the correlation between both stages is low,

t is likely that one of the edges will be favored to the detriment

f the other, i.e., it is preferred to be constructed in the second

tage. Conversely, if the correlation is high, it is more difficult to
 b  
istinguish between these two edges (they are more symmetric ),

o the algorithm must enumerate more solutions. Please note that

his behavior is not observed in the realistic instances discussed in

ection 4.4 . This is mainly due to the fact that such 3-cliques do

ot appear frequently. 

Also note that the number of scenarios has some impact on

he optimality gaps. This is caused by the additional running time

equired to generate the additional ( θ-C) constraints. This phe-

omenon is further studied when we address the analysis of the

olutions in terms of their robustness. 

.3. Analysis of the solutions 

he effort f or robustness. Increasing the robustness to uncertainty

y increasing the number of scenarios entails a trade-off between
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Fig. 3. Average running time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Average deterioration (increase of the total cost) when the optimal solution 

for a given number of scenarios is evaluated under an additional set of scenarios 

( n = 35 ). 
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the additional robustness provided by these scenarios and the in-

crease in the computational complexity of the problem that needs

to be addressed. Therefore, a compromise solution needs to be

reached between two opposing objectives: (i) minimizing the com-

puting time required to offer a solution for the problem; and (ii)

increasing the protection against uncertainty offered by the solu-

tion. 

The additional computing requirements associated to increas-

ing robustness have been coined the effort for robustness [see 1 ].

In order to evaluate this effort, Table 2 reports the evolution of

the average computing time requirements for instances with differ-

ent number of scenarios. A visual representation of the computing

time metric is provided in Fig. 3 . 

For different instance sizes, the lines of the graph, and num-

ber of scenarios, the X-axis, the average gap required to reach

optimality are reported, Y-axis, in logarithmic scale. Results for

n = { 25 , 30 , 35 } , which correspond to the instance sizes in which

optimality is consistently reached, are reported. Note that, while

the increase depicted in the figure roughly follows a line, the scale

is logarithmic and, thus, the increase in effort (measured as run-

ning time) is exponential to the number of scenarios. 

In order to justify the increase in computational requirements,

the additional effort required is to be accompanied by greater lev-

els of protection against uncertainty. A possible metric to evalu-

ate this additional protection is to measure how a solution for any

given number of scenarios deteriorates as the number of scenarios

increases. 

Let Z 
�1 , �2 
RNDC 

be the cost of the optimal solution found under

the set of scenarios �1 when evaluated in the set of scenarios

�2 ( �1 ⊆�2 ). Then, the deterioration ratio Z 
ω 1 ,ω 2 
RNDC 

/Z 
�1 , �1 
RNDC 

is always

equal to or greater than 1, and its value increases as the quality of

the solutions found for scenarios �1 deteriorates for some of the

scenarios in �2 . 

Fig. 4 reports the said metric. For all of the instances with

n = 35 , the problem was solved to optimality for each number of

scenarios and correlation costs, and the average measure of the de-

terioration ratio (axis-Y) for the solution obtained using 5, 10, 15,

20, 25 scenarios (each of the different lines) was evaluated on the

instances with additional scenarios (axis-X). 

Note that the deterioration ratio is always low (below 4% even

when the solution for 5 scenarios is evaluated with 50 scenar-

ios). Also note that the trend of deterioration of the solution when

the number of scenarios grows, shows that the positive slope is

smaller as the number of additional scenarios grows. For exam-

ple, the deterioration of the metric when increasing from 25 to

50 scenarios is much smaller than when increasing from 20 to 25
cenarios. Consequently, it seems reasonable not to consider larger

umber of scenarios as their contribution to the robustness of the

olution is minimal. 

omparison with the minimum spanning tree solution. Another im-

ortant question to ponder is how different the solutions for the

rst-stage problem (construction cost) are to the solutions for the

SRNDC (construction and recovery costs together). Note that the

ptimal solution to the first-stage problem corresponds to a min-

mum spanning tree, MST. As the solution to the problem studied

n the first-stage cost is easily solvable, the extra additional effort

equired to solve the two-stage problem is to be justified by poten-

ial differences between the solutions for both problems. In order

o illustrate these differences, Fig. 5 represents the ratio between

he edges shared by the MST and the best solution found with re-

pect to the number of edges of any spanning tree. 

The boxplots show that the difference between the MST and

he best solution found by the algorithm increases as the number

f nodes increases, and remains relatively constant regardless of

he remaining characteristics of the instance. For small-sized prob-

ems, this ratio shows a high level of intersection (between 70%

nd 80% of the edges of both solutions are identical) but the dif-

erence increases as the size of the spanning tree grows. These re-

ults highlight the differences between both problems, as well as

he importance of designing specific procedures for the 2SRNDC. 

The increasing difference between the MST and the 2SRNDC so-

ution also provides some explanation for the deterioration of the

erformance of the algorithm when the size of the instance grows.

s the number of nodes grows, the scheduling part of the problem

the second stage) becomes more important, leading to a more in-

ractable problem. 

.4. Analysis of results for the Chilean instance set 

While the experiment with the randomly generated instances

as geared towards understanding the behavior of the proposed

olution method under varying conditions, the experiment with

he Chilean instances tries to analyze the applicability of the

ethod on a realistic situation. Note that the size of the Chilean

nstance is much larger than the randomly generated ones, thus

howing the applicability of the proposed algorithm on larger-size

nstances, which feature the special characteristics of a real-life

etwork. 

In order to evaluate different situations, the restoration of the

omplete network as well as the reduced networks were consid-
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Fig. 5. Percentage of edges shared between the minimum spanning tree and the first stage solution. Instances are grouped according to their main characteristics (number 

of nodes, correlation between first and second stage costs, and number of scenarios. 

Table 4 

Detailed results for the Chilean instances grouped according to the 

aggregation parameter (0 km means no grouping) and the number 

of scenarios or the correlation. For each combination, the average 

gap is reported. 

# Scenarios 0 km 5 km 10 km 15 km 20 km 

5 14 .669 6 .971 2 .890 0 .423 0 .0 0 0 

10 15 .652 8 .013 2 .667 0 .782 0 .0 0 0 

15 15 .432 8 .190 2 .990 0 .917 0 .0 0 0 

20 15 .890 8 .194 3 .254 0 .924 0 .0 0 0 

25 16 .089 8 .375 3 .355 1 .061 0 .0 0 0 

50 16 .374 8 .296 3 .536 1 .342 0 .0 0 0 

ρ 0 km 5 km 10 km 15 km 20 km 

0 16 .977 9 .043 3 .940 1 .540 0 .0 0 0 

0 .25 17 .044 8 .755 3 .496 1 .140 0 .0 0 0 

0 .5 15 .924 8 .114 3 .086 0 .728 0 .0 0 0 

0 .75 12 .793 6 .113 1 .939 0 .225 0 .0 0 0 
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red. Table 4 provides the average optimality gaps for these in-

tances when grouped according to the number of scenarios or the

orrelation factor. 

The results show that the algorithm obtains smaller average

aps than those obtained for the randomly generated instances,

ven when the number of nodes is larger. Note that the small-

st instances, grouping factor P = 20 km, contain 91 nodes and they

re solved to optimality for all of the scenarios and correlation

ases. Even for the largest instances, those without aggregation or

 lower level of aggregation, the results show that the optimality

aps are much smaller than the optimality gaps for smaller ran-

omly generated instances. This is possibly as a result of the struc-

ure of the Chilean road network, which makes the problem more

menable than randomly generated instances. Furthermore, the re-

ults also show that larger correlation factors lead to instances

ith smaller optimality gaps, which further highlights the impact

f more structured instances on the behavior of the algorithm. 

. Conclusions 

In this paper we have considered a family of novel network

esign problems in which the network construction decisions are

aken into account during the network design stage. These prob-

ems model situations in which: (i) the network is constructed dur-

ng long periods of time; (ii) the nodes of the network receive

ervice as soon as they are connected to the depot; and/or (iii)

he network is subject to frequent reconstruction operations. More

mportantly, the proposed framework incorporates uncertainty as
art of the construction phase. The resulting problem, which is re-

erred to as the Two-Stage Robust Network Design and Construc-

ion Problem (2SRNDCP), considers the design of the network as

he first-stage problem, while the second-stage problem optimizes

 (robust) construction schedule of the first stage network. Among

he possible formulations of both the first-stage and second-stage

roblems, we consider the construction of a spanning tree and the

worst-case) sum of connection times respectively. 

These first-stage and second-stage problems were selected for

heir theoretical (they depict basic formulations of their respective

roblem categories) and practical interest (the first-stage problem

ries to obtain a minimal network to reach any node of the net-

ork from a supply center, while the second-stage problem opti-

izes over the worst-case total connection time of all nodes to the

epot). While the formulations can be seen as simplistic, the re-

ulting problem is computationally hard, as even the second stage

roblem by itself is NP-hard [3] . 

In order to provide a solution for the problem, a constraint-

eneration approach is proposed. Furthermore, a matheuristic cut

enerator, derived from the optimal resolution of reduced in-

tances of the second-stage problem, is incorporated. The pro-

osed approach is compared with an extended formulation of the

roblem, as well as with the constraint-generation approach with-

ut the matheuristic cuts. The results show that incorporating the

atheuristic significantly improves, in terms of lower optimal-

ty gaps, the solution provided by the basic constraint generation

ethod. 

The algorithm is tested on two different instance sets. The re-

ults for a randomly generated set of instances show that it is ca-

able of optimally solving instances with up to 35 nodes, and it

rovides very reduced optimality gaps for instances with 40–45

odes. The results for a set of instances derived from the Chilean

oad network show that much larger instances (approximately 100

odes) can be solved to optimality due to the structured nature of

he network. 

According to the obtained results, we draw the following con-

lusions: 

• While the resolution of an extended formulation of the prob-

lem is possible, its applicability is limited to very small in-

stance sizes. For larger instances, the procedure based on dy-

namically adding constraints to bound the second-stage func-

tion (that uses a matheuristic method to generate additional

( θ-C) constraints) outperforms other methods. The matheuris-

tic relies on a branch-and-bound procedure to solve small-sized

second-stage problems to optimality, and then derives cuts that
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prune the solution space. The branch-and-bound method re-

quires the use of some properties of the second-stage problem

in order to speed up the search. 
• Simultaneously considering the network construction (recon-

struction) decisions and the network design decisions has a

great impact on the implemented network. Even for moderately

small instances ( n = 30), there is a 30% difference on aver-

age among the edges of the minimum spanning tree (the op-

timal solution of the first stage), and the edges of the (optimal)

2SRNDCP solution. This difference, which increases along with

the instance size, emphasizes the usefulness of the simultane-

ous resolution of the design and the construction problems. 
• When compared with the related literature (see [3,4] ), the pro-

posed approach is effective for slightly smaller instances than

those considered in the literature. Nonetheless, the problem ad-

dressed in this paper incorporates two additional levels of dif-

ficulty. On the one hand, we combine both design and schedul-

ing decisions; and on the other hand, we consider the presence

of uncertainty modeled by discrete scenarios and we tackle it

via robust optimization. Consequently, the decrease in the size

of the optimally solved instances can be attributed to these ad-

ditional levels of complexity; furthermore, this does not hin-

der the ability of the algorithm to solve large-scale real-life in-

stances. 
• While this work considers a robust version of the problem with

uncertainty in the second-stage costs, it is possible to apply the

methodology to deterministic problems in which the realization

of the costs of the construction phase is known in advance.

Nevertheless, the authors believe that the importance of tak-

ing into account uncertainty in the construction phase balances

out the additional computational burden that its treatment re-

quires. Moreover, the results show that including a small num-

ber of scenarios is enough to protect the solution against un-

certainty. 

As a final remark, we highlight the versatility of the proposed

solution scheme for other types of 2SRNDCP. Other formulations

for the first or the second stage, like the Steiner tree or weighted

completion time objectives, could be easily incorporated in the

proposed framework after modifying their corresponding algorith-

mic components. 
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Appendix A. 

A.1. An extended formulation of 2SRSTSCT 

Let A be the set of arcs of the bi-directed counterpart of G =
(V, E) , G A = (V, A ) , such that A = { (i j) , ( ji ) | e : { i, j} ∈ E} ; likewise,

d i j = d ji = d e and c ω 
i j 

= c ω e , ∀ e : { i, j } ∈ E . 

Let x ∈ {0, 1} | A | be a binary vector such that x i j = 1 , if arc ( ij )

∈ A belongs to a spanning arborescence of G A and x i j = 0 other-

wise. Moreover, let y = 

(
y 1 , . . . , y ω , . . . , y | �| ) be a collection of bi-

nary vectors y ω ∈ { 0 , 1 } | A |×(| V |−1) , such that for each ω ∈ � and

k = { 1 , . . . , n − 1 } , y kω 
i j 

= 1 if arc e ∈ E is the k th constructed arc if

scenario ω ∈ � is realized, and y kω e = 0 otherwise. 

We will use the following additional notation: a set of vertices

S ⊆V ( S � = ∅ ) and its complement S̄ = V \ S, induce two directed cuts,

δ+ ( S ) = 

{
(i j) | i ∈ S, j ∈ S̄ 

}
and δ−( S ) = 

{
(i j) | i ∈ S̄ , j ∈ S 

}
. 
Then formulation (2SRSTC.1) –(2SRSTC.11) constitute a valid for-

ulation for the Two-Stage Robust Spanning Tree Construction

roblem (2SRSTC). 

in 

∑ 

(i j) ∈ A 
d i j x i j + θ (2SRSTC.1)

.t. 
∑ 

(i j) ∈ δ−( S ) 

x i j ≥ 1 , ∀ S ⊆ V \ { r } S � = ∅ (2SRSTC.2)

∑ 

(i j ) ∈ δ−( j ) 

x i j = 1 , ∀ j ∈ V \ { r} . (2SRSTC.3)

∑ 

(r j) ∈ δ+ (r) 

y 1 ω r j = 1 , ∀ ω ∈ � (2SRSTC.4)

∑ 

(i j) ∈ A 
y k i j = 1 , ∀ k ∈ { 2 , . . . , | V | − 1 } ∀ ω ∈ � (2SRSTC.5)

n −1 ∑ 

k =1 

∑ 

(i j) ∈ δ−( j) 

y kω i j = 1 , ∀ j ∈ V \ { r} ∀ ω ∈ � (2SRSTC.6)

y 1 ω i j = 0 , ∀ (i j) ∈ A | i � = r ∀ ω ∈ � (2SRSTC.7)

y kω i j ≤ x i j , ∀ (i j) ∈ A ∀ ω ∈ � (2SRSTC.8)

θ ≤
| V |−1 ∑ 

k =1 

∑ 

(i j) ∈ A 
(| V | − k ) c ω i j y 

kω 
i j , ∀ ω ∈ � (2SRSTC.9)

 i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A (2SRSTC.10)

 

kω 
i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A ω ∈ � k ∈ { 1 , . . . , | V | − 1 } . (2SRSTC.11)

onstraints sets (2SRSTC.2), (2SRSTC.3) and (2SRSTC.10) define the

rst stage problem. Constraint (2SRSTC.2) , which are exponential

n number, are known as cut-set or connectivity inequalities and

hey ensure that there is a directed path from the root r to each

ther node v ∈ V �{ r }. This type of constraints is usually used in the

ontext of effective branch-and-cut procedures and its separation

an be performed in polynomial time using a maximum-flow algo-

ithm on a support graph with arc-capacities given by the current

ractional solution 

˜ x . Constraints (2SRSTC.3) , commonly referred as

n-degree constraints, ensure the solution to be cycle-free. 

Constraint sets (2SRSTC.4) –(2SRSTC.8) as well as the domain

efinition, constraint set (2SRSTC.11) define the extended form of

he second stage. Constraint (2SRSTC.4) imposes that the first con-

tructed arc starts at r . The fact that each of the arcs are con-

tructed only once is modeled by (2SRSTC.5) . For each scenario

onstraint (2SRSTC.6) models that every node j ∈ V �{ r } must be

eached by exactly one constructed arc (i j) ∈ δ−( j) . The connec-

ivity of the construction scheduling is imposed by (2SRSTC.7) ; it

mposes that if an arc ( ij ) ∈ A | i � = r is the k th constructed arc, then

t least one arc incident to i ( (hi ) ∈ δ−(i ) ) must have been previ-

usly constructed. Constraint (2SRSTC.8) relates variables y ω with

he solution x in such a way that an arc ( ij ) ∈ A can be constructed

 y kω 
i j 

= 1 for some k = { 1 , . . . , n − 1 } ) if and only if it has been cho-

en as part of the designed network ( x i j = 1 ). The value of θ is ob-

ained in (2SRSTC.9) . Finally, (2SRSTC.11) define the domain of the

ariables of the extended form of the second stage. 
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Table 5 

Detailed results with instances grouped according to size and number of scenarios. 

# # # # # # # Av. Av. 

Nodes Scenarios Cut-sets ( θ-C) Matheuristic ( θ-C) BCnodes Opt gap time 

25 5 24 .5 64 .2 32 .0 119 .0 4 0 .0 4 .2 

10 38 .0 126 .2 101 .2 186 .8 4 0 .0 14 .8 

15 35 .0 254 .5 159 .2 245 .8 4 0 .0 21 .8 

20 38 .5 373 .2 231 .8 297 .8 4 0 .0 53 .8 

25 43 .5 278 .5 263 .2 229 .8 4 0 .0 50 .3 

50 41 .5 729 .5 396 .2 247 .2 4 0 .0 105 .7 

30 5 42 .0 146 .5 75 .8 371 .8 4 0 .0 12 .6 

10 47 .0 310 .2 170 .5 427 .5 4 0 .0 18 .8 

15 54 .0 500 .8 289 .5 595 .2 4 0 .0 27 .3 

20 55 .0 634 .8 529 .0 663 .0 4 0 .0 58 .8 

25 52 .5 912 .0 484 .0 745 .8 4 0 .0 87 .6 

50 52 .0 1588 .5 848 .5 693 .5 4 0 .0 245 .2 

35 5 80 .5 401 .2 263 .0 2052 .5 4 0 .0 86 .3 

10 120 .0 1127 .0 644 .0 4111 .2 4 0 .0 282 .9 

15 125 .0 1406 .0 783 .2 3195 .5 4 0 .0 248 .9 

20 108 .0 1594 .8 959 .8 2652 .5 4 0 .0 293 .5 

25 116 .5 1871 .8 1506 .8 3916 .8 4 0 .0 542 .5 

50 137 .0 4706 .2 3223 .2 4626 .8 3 0 .3 1125 .8 

40 5 180 .5 2436 .0 2262 .5 25,864 .8 4 0 .0 1597 .0 

10 183 .5 4023 .0 3424 .0 18,056 .5 2 1 .0 1976 .4 

15 183 .5 4732 .2 4375 .0 15,059 .5 2 1 .0 2180 .8 

20 183 .0 6304 .2 5438 .2 12,023 .5 0 1 .7 2400 .0 

25 171 .0 6530 .2 5683 .5 10,463 .2 0 1 .8 2400 .0 

50 156 .5 9244 .5 7031 .5 60 0 0 .5 0 2 .9 2400 .0 

50 5 209 .5 2046 .5 2811 .2 17,428 .0 0 6 .0 2400 .0 

10 217 .5 2767 .0 4058 .2 11,600 .2 0 7 .0 2400 .0 

15 213 .5 3687 .8 4673 .5 9016 .8 0 7 .9 2400 .0 

20 192 .0 3843 .5 5424 .8 7683 .0 0 7 .8 2400 .0 

25 190 .0 4360 .0 5923 .5 6630 .5 0 8 .4 2400 .0 

50 168 .0 5735 .2 8246 .2 4562 .8 0 8 .9 2400 .0 

60 5 318 .5 1472 .2 2412 .2 14,207 .5 0 10 .7 2400 .0 

10 308 .0 1934 .2 3303 .8 9530 .0 0 11 .9 2400 .0 

15 297 .0 2468 .2 3996 .0 8460 .5 0 11 .6 2400 .0 

20 284 .5 3115 .5 5092 .0 6874 .5 0 12 .9 2400 .0 

25 281 .0 3267 .0 5229 .0 5760 .5 0 13 .3 2400 .0 

50 261 .0 4434 .5 7118 .2 3899 .0 0 14 .1 2400 .0 

75 5 624 .0 1069 .0 2019 .0 11,346 .2 0 17 .9 2400 .0 

10 610 .0 1687 .8 2820 .5 8272 .8 0 19 .1 2400 .0 

15 550 .5 1738 .2 3329 .5 6748 .0 0 19 .4 2400 .0 

20 559 .5 2118 .8 3851 .2 5756 .0 0 19 .6 2400 .0 

25 525 .5 2635 .2 4473 .2 5590 .0 0 19 .8 2400 .0 

50 478 .0 3435 .0 6061 .0 3522 .8 0 21 .2 2400 .0 

100 5 1181 .5 603 .5 1518 .8 10,513 .2 0 27 .3 2400 .0 

10 869 .0 910 .0 2421 .5 7220 .5 0 28 .9 2400 .0 

15 923 .5 1180 .8 2888 .5 6340 .8 0 29 .3 2400 .0 

20 860 .0 1385 .8 3006 .2 5315 .2 0 29 .3 2400 .0 

25 880 .5 1469 .5 3996 .5 5058 .0 0 30 .0 2400 .0 

50 750 .5 2175 .5 5094 .5 3421 .5 0 31 .6 2400 .0 
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.2. Detailed results 

Table 5 provides an analysis of the results grouped by instance

ize and number of scenarios (4 instances per group), while Table 6

rovides the same results grouped by instance size and correlation

etween the first-stage and the second-stage costs (6 instances per

roup). 

Table 5 shows an increase in the required running time as the

umber of nodes and scenarios grow. Note that for instances with

 > 50, the algorithm fails to find any optimal solution and thus

he average running time equals the time limit of the algorithm.

able 5 also shows that the number of nodes and cuts dramatically
ncreases for n ≥ 40, showing the limits of the proposed approach

nd the difficulty of the problem. 

.3. Graphical representation of the Chilean network 

Fig. 6 (a) shows a representation of the complete road network.

 detail of the network corresponding to the central area of Chile

where more than 75% of the population is concentrated) is dis-

layed in Fig. 6 (b). 

Fig. 6 (c) and (d) show the resulting instances when considering

 = 10 and P = 20 respectively. 
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Table 6 

Detailed results with instances grouped according to size and correlation. 

# # # # # # Av. Av. 

Nodes Correlation Cut-sets ( θ-C) Matheuristic ( θ-C) BCnodes Opt gap time 

25 0 31 .0 166 .7 133 .5 149 .2 6 0 .0 34 .3 

25 35 .3 228 .7 167 .0 207 .5 6 0 .0 71 .5 

50 42 .3 356 .8 240 .3 280 .0 6 0 .0 24 .2 

75 38 .7 465 .3 248 .3 247 .5 6 0 .0 37 .2 

30 0 45 .3 594 .3 302 .8 557 .0 6 0 .0 66 .8 

25 52 .7 654 .2 346 .7 639 .7 6 0 .0 92 .5 

50 50 .0 686 .3 465 .5 576 .7 6 0 .0 99 .7 

75 53 .7 793 .7 483 .2 557 .8 6 0 .0 41 .2 

35 0 98 .7 1231 .2 679 .7 2038 .7 6 0 .0 149 .2 

25 112 .0 1603 .3 1122 .3 3180 .5 6 0 .0 319 .7 

50 125 .0 2306 .2 1618 .5 4731 .5 5 0 .2 863 .1 

75 122 .3 2264 .0 1499 .5 3752 .8 6 0 .0 387 .9 

40 0 161 .7 5131 .0 3959 .3 13,343 .7 3 0 .7 1863 .7 

25 176 .0 5122 .7 4350 .8 16,808 .5 3 0 .8 2079 .3 

50 180 .3 5572 .5 5015 .7 14,769 .3 1 1 .8 2329 .8 

75 187 .3 6354 .0 5484 .0 13,390 .5 1 2 .2 2363 .3 

45 0 131 .0 4266 .2 6350 .3 10,526 .0 0 4 .2 2400 .0 

25 142 .3 3972 .7 6506 .8 10,820 .3 0 5 .1 2400 .0 

50 149 .3 3608 .2 6206 .5 9494 .2 0 6 .8 2400 .0 

75 140 .3 3748 .5 5551 .0 8539 .8 0 6 .9 2400 .0 

50 0 195 .0 3819 .2 5054 .5 9164 .7 0 7 .2 2400 .0 

25 201 .3 3862 .8 5258 .3 10,126 .7 0 7 .5 2400 .0 

50 194 .7 3553 .3 5197 .0 9216 .5 0 7 .9 2400 .0 

75 202 .7 3724 .7 5248 .5 9439 .7 0 8 .1 2400 .0 

60 0 271 .3 2855 .2 4467 .5 8526 .3 0 11 .2 2400 .0 

25 290 .7 2940 .5 4851 .8 8435 .0 0 12 .0 2400 .0 

50 303 .7 2646 .3 4385 .8 7762 .8 0 13 .3 2400 .0 

75 301 .0 2685 .8 4395 .7 7763 .8 0 13 .1 2400 .0 

75 0 545 .0 2047 .8 34 4 4 .2 6533 .2 0 18 .0 2400 .0 

25 555 .3 2295 .8 3870 .3 7255 .3 0 19 .6 2400 .0 

50 576 .7 2091 .8 3775 .3 6966 .7 0 20 .0 2400 .0 

75 554 .7 2020 .5 3946 .5 6735 .3 0 20 .3 2400 .0 

100 0 912 .7 1285 .8 3020 .8 6279 .7 0 28 .0 2400 .0 

25 917 .0 1216 .7 3147 .3 5909 .0 0 29 .6 2400 .0 

50 927 .3 1428 .0 3265 .0 6537 .8 0 30 .5 2400 .0 

75 886 .3 1219 .5 3184 .2 6519 .7 0 29 .4 2400 .0 

Fig. 6. Examples of the underlying network of the instances considered for computation. 



E. Álvarez-Miranda, J. Pereira / Computers and Operations Research 81 (2017) 178–191 191 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  
eferences 

[1] Álvarez-Miranda E , Ljubi ́c I , Raghavan S , Toth P . The recoverable robust

two-level network design problem. INFORMS J Comput 2014;27:1–19 . 

[2] Atamtürk A , Zhang M . Two-stage robust network flow and design under de-
mand uncertainty. Oper Res 2007;55(4):662–73 . 

[3] Averbakh I , Pereira J . The flowtime network construction problem. IIE Trans
2012;44(8):681–94 . 

[4] Averbakh I , Pereira J . Network construction problems with due dates. Eur J
Oper Res 2015;244(3):715–29 . 

[5] Baxter M , Elgindy T , Ernst A , Kalinowski T , Savelsbergh M . Incremental net-

work design with shortest paths. Eur J Oper Res 2014;238(3):675–84 . 
[6] Ben-Tal A , Goryashko A , Guslitzer E , Nemirovski A . Adjustable robust solutions

of uncertain linear programs. Math Program Ser A 2004;99:351–76 . 
[7] Ben-Tal, A, El-Ghaoui, L Nemirovski, A (Eds.) (2010). Robust optimization. Se-

ries in applied mathematics, Princeton. 1st ed. 
[8] Bertsimas D , Sim M . The price of robustness. Oper Res 2004;52(1):35–53 . 

[9] Birge J , Louveaux F . Series in operations research and financial engineering.
Introduction to stochastic programming. Springer; 2011 . 

[10] Brucker, P, (2007). Scheduling algorithms, 5th ed. Springer. 

[11] Büsing C . Recoverable robust shortest path problems. Networks
2012;59(1):181–9 . 

[12] Emmons H . One-machine sequencing to minimize certain functions of job tar-
diness. Oper Res 1969;17(4):701–15 . 

[13] Engel, K., Kalinowski, T., & Savelsbergh, M. (2013). Incremental network design
with minimum spanning trees. URL http://arxiv.org/abs/1306.1926 . 
[14] Johnson D , Minkoff M , Phillips S . The prize collecting steiner tree problem:
theory and practice. In: Proceedings of the 11th symposium on discrete algo-

rithms; 20 0 0. p. 760–9 . ACM/SIAM 

[15] Kalinowski, T., Matsypura, D., & Savelsbergh, M. (2014). Incremental net-

work design with maximum flows. URL http://www.sciencedirect.com/science/
article/pii/S0377221714008078 . 

[16] Koch T , Martin A . Solving Steiner tree problems in graphs to optimality. Net-
works 1998;32(3):207–32 . 

[17] Kouvelis P , Yu G . Robust discrete optimization and its applications. Nonconvex

optimization and its applications. Kluwer Academic Publishers; 1997 . 1st ed. 
[18] Laporte G , Louveaux F . The integer l-shaped method for stochastic integer pro-

grams with complete recourse. Oper Res Lett 1993;13(3):133–42 . 
[19] Montgomery D . Design and analysis of experiments. Wiley; 2012 . 8th ed. 

20] Nurre S , Sharkey T . Integrated network design and scheduling problems with
parallel identical machines: complexity results and dispatching rules. Net-

works 2014;63(4):306–26 . 

[21] Nurre S , Cavdaroglu B , Mitchell J , Sharkey T , Wallace W . Restoring infrastruc-
ture systems: an integrated network design and scheduling (inds) problem. Eur

J Oper Res 2012;223(3):794–806 . 
22] Quilliot A . Network design problems: fundamental methods. In: Paschos V,

editor. Applications of combinatorial optimization. John Wiley & Sons; 2013.
p. 253–89 . Chapter 9. 

23] Zhao L , Zeng B . An exact algorithm for two-stage robust optimization with

mixed integer recourse problems. Technical Report; 2012 . 

http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0001
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0001
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0001
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0001
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0001
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0002
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0002
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0002
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0003
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0003
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0003
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0004
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0004
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0004
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0008
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0008
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0008
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0009
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0009
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0009
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0011
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0011
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0012
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0012
http://arxiv.org/abs/1306.1926
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0013
http://www.sciencedirect.com/science/article/pii/S0377221714008078
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0016
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0016
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0016
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0017
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0017
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0017
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0018
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0018
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0018
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0020
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0020
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0020
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0021
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0021
http://refhub.elsevier.com/S0305-0548(16)30317-3/sbref0021

	Designing and constructing networks under uncertainty in the construction stage: Definition and exact algorithmic approach
	1 Introduction and motivation
	1.1 Our contribution
	1.2 Previous work

	2 The two-sage robust network design and construction problem
	2.1 General framework: the 2SRNDC
	2.2 The 2SRSTSCT: definition
	2.3 The 2SRSTSCT: relations with other problems

	3 Algorithmic framework
	3.1 Approximation of the second-stage objective
	3.2 Heuristic generation of (-C) constraints
	3.3 Further enhancements

	4 Computational results
	4.1 Benchmark instances
	4.2 Algorithmic performance
	4.3 Analysis of the solutions
	4.4 Analysis of results for the Chilean instance set

	5 Conclusions
	 Acknowledgment
	 Appendix A.
	A.1 An extended formulation of 2SRSTSCT
	A.2 Detailed results
	A.3 Graphical representation of the Chilean network

	 References


