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We generalize the problem of univalence of the integral of f ′(z)α when f is univalent 
to the complex harmonic mappings. To do this, we extend the univalence criterion 
by Ahlfors in [1] to those mappings.
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1. Introduction

Let S be the set of all holomorphic and univalent functions in the unit disc D, normalized by the conditions 
f(0) = 0 and f ′(0) = 1. Let α be a complex number and define the function fα as

fα(z) =
z∫

0

[f ′(ζ)]α dζ . (1)

The power in the mapping fα is defined via the branch of log f ′(ζ) for which log f ′(0) = 0. It is trivial to 
check that given any f , if either α = 1 or α = 0, the corresponding function fα belongs to S. Nevertheless, 
the question of how to determine the values of α for which the function fα is in S when f ∈ S is not so 
simple. W.C. Royster showed that, in general, fα fails to be univalent for |α| > 1/3 and α �= 1, see [13]. J. 
Pfaltzgraff in [11] proved that for any given function f in the unit disc normalized as above in a linearly 
invariant family F with order λ, defined by the supremum of the modulus of the second Taylor coefficient, 
then fα belongs to S if |α| ≤ 1/(2λ). When F = S, it is well known that λ = 2, hence if |α| ≤ 1/4, then 
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fα ∈ S. However, it is an open problem to determine if fα is univalent when 1/4 < |α| ≤ 1/3. Moreover, 
for real α and some subclasses of univalent functions in the unit disc, the problem was completely resolved, 
for instance when the original function f is convex or close-to-convex mapping. The reader can find further 
explanation in [5, p. 153].

Let f now be a complex value univalent harmonic mapping in the unit disc. We assume that f is sense 
preserving, this is, f = h + g where h and g are analytic functions in D such that h is locally univalent and 
the dilatation ω = g′/h′ is an analytic function, mapping the unit disc into itself. The main purpose of this 
note is to extend the J. Pfaltzgraff’s result to these harmonic mappings and the tools used in that work. In 
Theorem 4 we prove concretely that, if α is a real number such that

|α| ≤ 1
2λ + (‖ω‖∞ + 4)‖ω∗‖ ,

then fα is univalent in D.

2. Background

One of the most used univalence criterion for locally univalent holomorphic mappings was showed by J. 
Becker in [2], which asserts that, if (1 − |z|2)|zf ′′(z)/f ′(z)| ≤ 1 then f is univalent in D. L. Ahlfors in [1]
gave a generalization of these results which became the main tools used by J. Pfaltzgraff. This criterion can 
be formulated as:

Theorem A. Let f : D → C be a holomorphic function with f ′ �= 0. Let c ∈ C with |c| < 1, c �= −1, and 
assume that

∣∣∣∣(1 − |z|2)z f
′′

f ′ (z) + c|z|2
∣∣∣∣ ≤ 1, ∀z ∈ D.

Then f is univalent on D.

2.1. Complex value harmonic mappings

A complex-valued harmonic function in a simply connected domain Ω has a representation f = h + g, 
where h and g are analytic functions in Ω, that is unique up to an additive constant. Notice that when Ω = D

it is convenient to choose the additive constant so that g(0) = 0. The representation f = h + g is therefore 
unique and is called the canonical representation of f . Lewy in [10] proved that f is locally univalent if and 
only if the Jacobian satisfies Jf = |h′|2 − |g′|2 �= 0. Thus, harmonic mappings are either sense-preserving 
or sense-reversing depending on the conditions Jf > 0 and Jf < 0 respectively throughout the domain Ω
where f is locally univalent. Since Jf > 0 if and only if Jf < 0 we will consider sense-preserving mappings 
in D throughout all of this work. In this case the analytic part h is locally univalent in D since h′ �= 0, and 
the second complex dilatation of f , ω = g′/h′, is an analytic function in D with |ω| < 1, see [3].

Hernández and Martín, [6], defined the harmonic Schwarzian and pre-Schwarzian derivative for locally 
univalent sense-preserving mappings f = h + g. Using this definition, they generalized different results 
regarding analytic functions to the harmonic case [6–9]. The pre-Schwarzian derivative of a sense-preserving 
harmonic function f coincides with

Pf = h′′

′ − ω̄ω′

2 = ∂ log(Jf ). (2)

h 1 − |ω| ∂z
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It’s easy to see that if f is analytic (f = h and ω = 0) then Pf = h′′/h′ and recovers the classical definition of 
this operator. In [8] the authors proved that for any a ∈ D, Pf+af = Pf . Observe that f+af = h +ag+g + ah. 
In addition, they showed the extension of the Becker’s criterion of univalence, this is, if

(1 − |z|2)|zPf (z)| + |zω′(z)|(1 − |z|2)
1 − |ω(z)|2 ≤ 1, (3)

then f is univalent in D. Note that f is analytic, then ω ≡ 0 we recover the classical result by J. Becker [2].

2.2. Affine and linearly invariant families

T. Sheil-Small in [14], gives a generalization of affine and linearly invariant families, introduced by Pom-
merenke in [12], for sense-preserving harmonic mappings in D. We say that F is a linearly invariant family 
of sense-preserving harmonic mappings, f = h + g, normalized to h(0) = 0 and h′(0) = 1, if for any f ∈ F
we have that the Koebe transform of f belongs to F , this is, for any a ∈ D we have that:

Ka(f)(z) = f ◦ ϕa(z) − f(a)
(1 − |a|2)h′(a) =∈ F , (4)

where ϕa : D −→ D is the automorphism for any a ∈ D defined by

ϕa(z) = a + z

1 + az
. (5)

The order of this family is defined by

OrdF = sup
f∈F

|a2(f)| = 1
2 sup

f∈F
|h′′(0)|.

It’s not difficult to see that OrdF = λ > 1 when F is not contained in the analytic space. In addition, we 
say that F is affine invariant family if for any f ∈ F and ε ∈ D, we have that

Aε(f)(z) = f(z) − εf(z)
1 − εg′(0) ∈ F . (6)

The reader can find more details in [14]. The family SH of normalized harmonic univalent functions in D is 
an affine linearly invariant family where its order is unknown. One of the most important references for this 
topic is [4]. Another affine and linearly invariant family is given by all stable harmonic convex mappings 
(SHC) which are the mappings f = h + g such that h + εg are convex for all |ε| = 1 introduced in [6]. In 
that paper, the authors showed that if f = h + g ∈ SHC then h + εg is convex mapping for all |ε| ≤ 1, 
in particular h is convex mapping, thus its order is equal to 1. It’s a well known result that the family of 
convex mappings, C, satisfies that its order is 1 and is the minimum order of linearly invariant families of 
holomorphic mappings, moreover if OrdF = 1, then F is a subfamily of C. Now, we will show the harmonic 
version of this result:

Lemma 1. Let F be an affine and linearly invariant family of sense-preserving harmonic mappings, then 
OrdF ≥ 1 and the equality holds if and only if F is a subfamily of SHC.

Proof. Since HF = {h : h + g ∈ F} is a linearly invariant family of holomorphic mappings it follows that 
OrdHF ≥ 1, therefore OrdF ≥ 1. If OrdF = 1 then OrdHF = 1 thus HF ⊆ C. Let f ∈ F , but h + ag is 
the analytic part of f + af in F for all a ∈ D, then h + ag is convex for all a ∈ D and h + ag is convex for 
all a ∈ ∂D therefore f ∈ SHC. �
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3. Main results

The next proposition is a generalization of Theorem A, given previously, to complex value harmonic sense 
preserving mappings.

Proposition 1. Let f = h + g be a sense-preserving harmonic function in the unit disc D with dilatation ω, 
|ω| < 1, c ∈ C such that |c| ≤ 1 and c �= −1. If

∣∣(1 − |z|2)zPf (z) + c|z|2
∣∣ + |zω′(z)|(1 − |z|2)

1 − |ω(z)|2 ≤ 1, z ∈ D, (7)

then f is univalent.

Proof. Let f = h + g which satisfies (7). We note that
∣∣∣∣z h

′′

h′ + c|z|2
1 − |z|2

∣∣∣∣ =
∣∣∣∣z h

′′

h′ − zωω′

1 − |ω|2 + c|z|2
1 − |z|2 + zωω′

1 − |ω|2

∣∣∣∣

=
∣∣∣∣zPf + c|z|2

1 − |z|2 + zωω′

1 − |ω|2

∣∣∣∣

≤
∣∣∣∣zPf + c|z|2

1 − |z|2

∣∣∣∣ + |zωω′|
1 − |ω|2

≤
∣∣∣∣zPf + c|z|2

1 − |z|2

∣∣∣∣ + |zω′|
1 − |ω|2

≤ 1
1 − |z|2 .

Hence, using Theorem A we obtain that h is univalent. Now, give a ∈ D, the function f+af = h +ag+g + ah, 
using (5), satisfies that its dilatation is

ωa = g′a
h′
a

= g′ + ah′

h′ + āg′
= a + ω

1 + āω
= ϕa ◦ ω.

Since Pf+af = Pf (see equation (2)) and ϕ′
a(z) = (1 − |a|2)/(1 + az)2 we can see that

|zω′
a|

1 − |ωa|2
= |zϕ′

a(ω)ω′|
1 − |ϕa(ω)|2 = |zω′|

1 − |ω|2 · |ϕ
′
a(ω)|(1 − |ω|2)
1 − |ϕa(ω)|2 = |zω′|

1 − |ω|2 ,

therefore f +af satisfies the hypothesis of the theorem, then for any a ∈ D, function h +ag is univalent. By 
Hurwitz’s theorem the functions h + λg are univalent for all |λ| = 1 which implies that h + λg is univalent 
(see [6]), in particular we have that f is univalent. �

The hyperbolic derivative of w : D → D is given by

w∗ = |w′(z)|(1 − |z|2)
1 − |w(z)|2 , (8)

and the norm is defined by ‖ω∗‖ = sup{z ∈ D : ω∗(z)}.
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Lemma 2. Let F be an affine and linearly invariant family with OrdF = λ < ∞, λ > 1 and f = h + g ∈ F
with dilatation ω, then

∣∣∣∣(1 − |z|2)h
′′

h′ (z) − 2z
∣∣∣∣ ≤ 2λ + ‖ω‖‖ω∗‖.

Proof. Let f = h + ḡ ∈ F with h(z) = z+a2z
2+ · · · , g(z) = b1z+b2z

2+ · · · and using (6) Aε(f)(z) = H+G

belongs to F and satisfies that

H = h− b1g

1 − |b1|2
, G = g − b1h

1 − |b1|2
.

As H ′′ = (h′′ − b1g
′′)/(1 − |b1|2), we have that

∣∣∣∣12H ′(0)
∣∣∣∣ = 1

2

∣∣∣∣h
′′(0) − b1g

′′(0)
1 − |b1|2

∣∣∣∣ ≤ 1
2 sup

F∈F
|H ′′(0)| ≤ λ.

Considering ω(0) = b1, the last inequality and g′′(0) = ω′(0) + ω(0)h′′(0) = ω′(0) + 2a2b1, by Schwarz–Pick 
lemma we can conclude that

|a2| ≤ λ + |b1ω′(0)|
2(1 − |b1|2)

. (9)

Now, give a ∈ D, the function Ka(f) defined by (4) can be expressed as

Ka(f)(z) = Ha(z) + Ga(z) = H(ϕa(z)) + G(ϕa(z)) =

=
∞∑

n=1
cn(a)zn +

∞∑
n=1

dn(a)zn ∈ F .

In addition, noting that

H ′
a(z) =

h′
(

a + z

1 + az

)(
1 − |a|2

(1 + az)2

)

(1 − |a|2)h′(a) = 1
h′(a)

[
h′

(
a + z

1 + az

)
(1 + az)−2

]
,

and

H ′′
a (z) = 1

h′(a)

[
h′′

(
a + z

1 + az

)
1 − |a|2

(1 + az)2
1

(1 + az)2 + −2a
1 + az

h′
(

a + z

1 + az

)]
,

we obtain

c2(a) = H ′′
a (0)
2! = 1

2

(
h′′(a)
h′(a) (1 − |a|2) − 2a

)
.

Finally, replacing the last equality in (9) we have
∣∣∣∣h

′′

h′ (1 − |a|2) − 2a
∣∣∣∣ ≤ 2λ +

|d1ω
′
Fa

(0)|
1 − |d1|2

= 2λ + |ωFa
(0)| |ω

′(a)(1 − |a|2)|
2
1 − |ω(a)|
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≤ 2λ + sup
a∈D

|ω(a)| |ω
′(a)(1 − |a|2)|
1 − |ω(a)|2

≤ 2λ + ‖ω‖‖ω∗‖. �
3.1. Extension of fα for harmonic mappings

Let f = h + g be a locally univalent sense-preserving mapping with dilatation ω. For any complex value 
α and z ∈ D, we define the function fα as

fα(z) = hα(z) + (h + g)α(z) − hα(z). (10)

Since h′ �= 0, hα is well defined. In addition, if h′ + g′ = 0, then |g′/h′| = 1, which cannot be, that is, 
(h +g)α is well defined, thus fα is too. Assuming that f is normalized to h′(0) = 1 and g′(0) = 0, fα satisfies 
that f0 is the identity while f1 = f . The dilatation wα of fα defined in (10) is given by wα = (1 +w)α − 1. 
Indeed,

wα = (h′ + g′)α − (h′)α

(h′)α =
(

1 + g′

h′

)α

− 1 = (1 + w)α − 1. (11)

Since |ez − 1| ≤ e|z| − 1, for all z ∈ C we have that |ωα| < 1. Let α = a + ib be a complex number in D and 
θ = Arg{1 +ω}. In this case therefore |ωα| < 1 if and only if |1 +ω|2α < 2Re{(1 +ω)α} which is equivalent 
to

|1 + ω|a
ebθ

< 2 cos(b log |1 + ω| + aθ).

Considering θ = 0 we have that

|1 + ω|a < 2 cos(b log |1 + ω|), (12)

since when |1 + ω| tends to 0, (for instance when w is the Identity) the right side of equation (12) can be 
negative for some z ∈ D, which is a contradiction up until b = 0, therefore we need to assume that α is a 
real value.

On the other hand, it’s not difficult to see that in the definition of fα by equation (10) the co-analytic 
part can be replaced by (g+μh)α−(μh)α where μ is any complex value in ∂D. The corresponding dilatation 
is μα((μω + 1)α − 1) which is a rotation of (μω)α defined by (11). Moreover the next results can be proved 
for those functions.

Lemma 3. ‖ω∗
α‖ ≤ 2α‖ω∗‖ with α ∈ (0, 1).

Proof. We define ϕα(z) = (1 + z)α − 1 therefore ωα = ϕα ◦ ω. Thus,

ω∗
α = |ϕ′

α(ω)||ω′|(1 − |z|2)
1 − |ϕα(ω)|2 = |ϕ′

α(ω)|(1 − |ω|2)
1 − |ϕα(ω)|2 · |ω

′|(1 − |z|2)
1 − |ω|2 ,

then ‖ω∗
α‖ ≤ ‖ϕ∗

α‖‖ω∗‖. In consequence, it suffices to prove that ‖ϕ∗
α‖ ≤ 2α. In fact, a direct calculation 

shows that

ϕ∗
α = |ϕ′

α(z)|(1 − |z|2)
2 = α|1 + z|−1(1 − |z|2)

α α
.
1 − |ϕα(z)| 2Re {((1 + z)/(|1 + z|)) } − |1 + z|
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For fixed z ∈ D, we consider 1 + z = ρeiθ and δ(α) = 2Re {((1 + z)/(|1 + z|))α}− |1 + z|α = 2 cos(θα) − ρα. 
Moreover, as δ′(α) = −2 sin(θα)θ − ρα ln(ρ) then δ′(0) = − ln(ρ), and since θ ∈ (−π/2, π/2), we have 
that δ′′(α) = −2 cos(θα)θ2 − ρα ln2(ρ) < 0 hence δ′ is decreasing. If ρ ≥ 1 then δ′(0) ≤ 0 therefore 
δ′(α) ≤ δ′(0) ≤ 0 and in consequence δ is decreasing, which implies that δ(1) ≤ δ(α) ≤ δ(0) = 1.

In the case that ρ < 1 we have δ′(0) > 0. If there exists α0 ∈ (0, 1) since δ′ is decreasing it follows 
that this critical point is unique and is a maximum, thus δ(α) ≥ min{δ(0), δ(1)}, or δ′ �= 0 hence δ is an 
increasing function therefore δ(α) ≥ δ(0). Thus, for α ∈ (0, 1) we have

δ(α) ≥ min{δ(0), δ(1)}. (13)

Now, we note

• If δ(0) ≤ δ(1), using (13) we obtain

α|1 + z|α−1(1 − |z|2)
1 − |(1 + z)α − 1| ≤ α|1 + z|−1(1 − |z|2)

δ(0)
= α|1 + z|−1(1 − |z|2)
≤ α(1 + |z|).

• If δ(1) ≤ δ(0), using (13) we obtain

α|1 + z|α−1(1 − |z|2)
1 − |(1 + z)α − 1| ≤ α|1 + z|−1(1 − |z|2)

δ(1)

= α|1 + z|−1(1 − |z|2)

2Re

{
1 + z

|1 + z|

}
− |1 + z|

= α(1 − |z|2)
2Re {(1 + z)} − |1 + z|2

= α(1 + |z|).

Therefore, for α ∈ (0, 1) and fixed z ∈ D it follows that ϕ∗
α ≤ α(1 + |z|), then the proof is complete. �

Theorem 4. Let F be an affine and linearly invariant family with OrdF = λ < ∞ and f = h + g ∈ F with 
dilatation ω. Then the function fα(z) defined by (10) will be univalent when

α ≤ 1
2λ + (‖ω‖∞ + 4)‖ω∗‖ .

Proof. Let z ∈ D. We note that

∣∣z(1 − |z|2)Pfα + c|z|2
∣∣ + |zω′

α|
1 − |ωα|2

(1 − |z|2) =

=
∣∣∣∣(αh′′

h′ − ωαω
′
α

1 − |ωα|2
)z(1 − |z|2) + c|z|2

∣∣∣∣ + |zω′
α|

1 − |ωα|2
(1 − |z|2)

≤
∣∣∣∣αzh

′′

h′ (1 − |z|2) + c|z|2
∣∣∣∣ + 2|ω∗

α|

≤ α

∣∣∣∣h
′′

′ (1 − |z|2) − 2z
∣∣∣∣ + |(2α + c)z| + 2|ω∗

α|.
h
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Hence, using Lemma 3 and Lemma 2 we obtain

∣∣z(1 − |z|2)Pfα + c|z|2
∣∣ + |zω′

α|
1 − |ωα|2

(1 − |z|2) ≤

≤ α (2λ + ‖ω‖∞‖ω∗‖) + |2α + c| + 4α‖ω∗‖
= α(2λ + (‖ω‖∞ + 4)‖ω∗‖) + |2α + c|.

As λ > 1, the last inequality shows that α < 1/2, considering c = −2α �= −1 and using Proposition 1, we 
get fα is univalent for all α such that

α ≤ 1
2λ + (‖ω‖∞ + 4)‖ω∗‖ . �
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