|   | 
Details
   web
Records
Author Comisso, L.; Asenjo, F.A.
Title Magnetic reconnection as a mechanism for energy extraction from rotating black holes Type
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D.
Volume 103 Issue 2 Pages 023014
Keywords BLANDFORD-ZNAJEK MECHANISM; NEAR-INFRARED FLARES; SIMULATIONS; JETS; DRIVEN
Abstract Spinning black holes store rotational energy that can be extracted. When a black hole is immersed in an externally supplied magnetic field, reconnection of magnetic field lines within the ergosphere can generate negative energy (relative to infinity) particles that fall into the black hole event horizon while the other accelerated particles escape stealing energy from the black hole. We show analytically that energy extraction via magnetic reconnection is possible when the black hole spin is high (dimensionless spin a similar to 1) and the plasma is strongly magnetized (plasma magnetization sigma(0) > 1/3). The parameter space region where energy extraction is allowed depends on the plasma magnetization and the orientation of the reconnecting magnetic field lines. For sigma(0) >> 1, the asymptotic negative energy at infinity per enthalpy of the decelerated plasma that is swallowed by a maximally rotating black hole is found to be epsilon(infinity)(-) similar or equal to – root sigma(0)/3. The accelerated plasma that escapes to infinity and takes away black hole energy asymptotes the energy at infinity per enthalpy epsilon(infinity)(+) similar or equal to root 3 sigma(0).. We show that the maximum power extracted from the black hole by the escaping plasma is P-extr(max) similar to 0.1M(2) root sigma(0)w(0) (here, M is the black hole mass and w(0) is the plasma enthalpy density) for the collisionless plasma regime and one order of magnitude lower for the collisional regime. Energy extraction causes a significant spindown of the black hole when a similar to 1. The maximum efficiency of the plasma energization process via magnetic reconnection in the ergosphere is found to be eta(max) similar or equal to 3/2. Since fast magnetic reconnection in the ergosphere should occur intermittently in the scenario proposed here, the associated emission within a few gravitational radii from the black hole is expected to display a bursty nature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000607513600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1323
Permanent link to this record
 

 
Author Concha, P.K.; Durka, R.; Inostroza, C.; Merino, N.; Rodriguez, E.K.
Title Pure Lovelock gravity and Chern-Simons theory Type
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 2 Pages 14 pp
Keywords
Abstract We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.
Address [Concha, P. K.; Rodriguez, E. K.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile, Email: patillusion@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000381493600007 Approved
Call Number UAI @ eduardo.moreno @ Serial 647
Permanent link to this record
 

 
Author Gonzalez, HA.; Puhm, A,; Rojas, F.
Title Loop corrections to celestial amplitudes Type
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D.
Volume 102 Issue Pages 126027
Keywords Conformal field theory; Large-N expansion in field theory; Non-Abelian gauge theories; Perturbation theory; Scattering amplitudes; Supersymmetric models
Abstract We study the effect of loop corrections to conformal correlators on the celestial sphere at null infinity. We first analyze finite one-loop celestial amplitudes in pure Yang-Mills theory and Einstein gravity. We then turn to our main focus: infrared divergent loop amplitudes in planar N=4

super–Yang-Mills theory. We compute the celestial one-loop amplitude in dimensional regularization and show that it can be recast as an operator acting on the celestial tree-level amplitude. This extends to any loop order, and the resummation of all planar loops enables us to write down an expression for the all-loop celestial amplitude. Finally, we show that the exponentiated all-loop expression given by the Bern-Dixon-Smirnov (BDS) formula gets promoted on the celestial sphere to an operator acting on the tree-level conformal correlation function, thus yielding, the celestial BDS formula.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1282
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Supersymmetric Majorana quantum cosmologies Type
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 8 Pages 7 pp
Keywords
Abstract The Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker universe in the presence of a quintessence scalar field are shown to be described in a compact way, formally identical to the dynamics of a relativistic particle moving on a two-dimensional spacetime. The correct Lagrangian for the system is presented and used to construct a spinor quantum cosmology theory using Breit's prescription. The theory is supersymmetric when written in the Majorana representation. The spinor field components interact through a potential that correlates the spacetime metric and the quintessence. An exact supersymmetric solution for k = 0 case is exhibited. This quantum cosmology model may be interpreted as a theory of interacting universes.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000362901900005 Approved
Call Number UAI @ eduardo.moreno @ Serial 544
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Comment on “Highly relativistic spin-gravity coupling for fermions” Type
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 2 Pages 4 pp
Keywords
Abstract We exhibit difficulties of different sorts which appear when using the Mathisson-Papapetrou equations, in particular in the description of highly relativistic particles presented in R. Plyatsko and M. Fenyk [Phys. Rev. D 91, 064033 (2015)]. We compare some results of this theory and of the aforementioned work with the ones obtained using a Lagrangian formulation for massive spinning particles and show that the issues mentioned in the preceding sentence do not appear in the Lagrangian treatment.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000369327900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 640
Permanent link to this record
 

 
Author Koch, B.; Asenjo, F.; Hojman, S.
Title Almost relevant corrections for direct measurements of electron's g factor Type
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D.
Volume 105 Issue 5 Pages 053004
Keywords PHYSICS; MUON
Abstract We revisit the observable used for the direct measurements of the electron's g factor. This is done by considering the subleading effects of the large magnetic background field and virtual Standard Model processes. We find substantial corrections to the Landau levels of the electron. Implications for the observed magnetic moment and the tension between direct and indirect measurement are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000787620800007 Approved
Call Number UAI @ alexi.delcanto @ Serial 1573
Permanent link to this record