|   | 
Details
   web
Records
Author Celis, P.; de la Cruz, R.; Fuentes, C.; Gomez, HW.
Title Survival and Reliability Analysis with an Epsilon-Positive Family of Distributions with Applications Type
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 13 Issue 5 Pages 908
Keywords censored data; EM algorithm; epsilon– exponential distribution; exponential distribution; maximum likelihood; reliability analysis; survival analysis; stress-strength parameter
Abstract We introduce a new class of distributions called the epsilon-positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon-positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log-normal, log-logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon-positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM-type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007. The results show that this new family of distributions has a better performance fitting the data than some common alternatives such as the exponential distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000654702000001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1384
Permanent link to this record
 

 
Author de la Cruz, R.; Salinas, H.S.; Meza, C.
Title Reliability Estimation for Stress-Strength Model Based on Unit-Half-Normal Distribution Type
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 14 Issue 4 Pages 837
Keywords bootstrap confidence intervals; bootstrap methods; entropy; exact and asymptotic confidence interval; mean residual life; simulation studies; strength-stress model; unit-half-normal distribution
Abstract Many lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. We propose a novel estimation procedure of stress-strength reliability in the case of two independent unit-half-normal distributions can fit asymmetrical data with either positive or negative skew, with different shape parameters. We obtain the maximum likelihood estimator of the reliability, its asymptotic distribution, and exact and asymptotic confidence intervals. In addition, confidence intervals of model parameters are constructed by using bootstrap techniques. We study the performance of the estimators based on Monte Carlo simulations, the mean squared error, average bias and length, and coverage probabilities. Finally, we apply the proposed reliability model in data analysis of burr measurements on the iron sheets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000785126300001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1570
Permanent link to this record
 

 
Author Rubio, C.A.; Asenjo, F.A.; Hojman, S.A.
Title Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy Type
Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 11 Issue 7 Pages
Keywords
Abstract A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000481979000025 Approved
Call Number UAI @ eduardo.moreno @ Serial 1048
Permanent link to this record