|   | 
Details
   web
Record
Author (up) Pugazhenthiran, N.; Sathishkumar, P.; Albormani, O.; Murugesan, S.; Kandasamy, M.; Selvaraj, M.; Suresh, S.; Kumar, S.K.; Contreras, D.; Valdes, H.; Mangalaraja, R.V.
Title Silver nanoparticles modified ZnO nanocatalysts for effective degradation of ceftiofur sodium under UV-vis light illumination Type
Year 2023 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 313 Issue Pages 137515
Keywords 1D ZnO nanorodsPlasmonic Ag -ZnO nanostructures; Antibiotics contamination; Ceftiofur sodium; Photocatalytic oxidation
Abstract Light-induced photocatalytic degradation of ceftiofur sodium (CFS) has been assessed in the presence of plas-monic zinc oxide nanostructures (ZnONSTs), like, ZnO nanoparticles, ZnO nanorods (ZnONRs) and ZnO nano -flowers (ZnONFs). Silver nanoparticles (Ag NPs) loaded ZnO nanostructures (Ag-ZnONSTs) are obtained through seed-assisted chemical reaction followed by chemical reduction of silver. The surface modification of ZnO nanostructures by Ag NPs effectually altered their optical properties. Further, the surface plasmonic effect of Ag NPs facilitates visible light absorption by ZnONSTs and improved the photogenerated electron and hole separation, which makes the ZnONSTs a more active photocatalyst than TiO2 (P25) nanoparticles. Especially, Ag-ZnONRs showed higher CFS oxidation rate constant (k' = 4.6 x 10-4 s-1) when compared to Ag-ZnONFs (k' = 2.8 x 10-4 s-1) and Ag-ZnONPs (k' = 2.5 x 10-4 s-1), owing to their high aspect ratio (60:1). The unidirectional transport of photogenerated charge carriers on the Ag-ZnONRs may be accountable for the observed high photocatalytic oxidation of CFS. The photocatalytic oxidation of CFS mainly proceeds through center dot OH radicals generated on the Ag-ZnONRs surface under light illumination. In addition, heterogeneous activation of perox-ymonosulfate by Ag-ZnONRs accelerates the rate of photocatalytic mineralization of CFS. The quantification of oxidative radicals supports the proposed CFS oxidation mechanism. Stability studies of plasmonic Ag-ZnONSTs strongly suggests that it could be useful to clean large volume of pharmaceutical wastewater under direct solar light irradiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes WOS:000907930700006 Approved
Call Number UAI @ alexi.delcanto @ Serial 1728
Permanent link to this record