|   | 
Details
   web
Records
Author Rubio, C.A.; Asenjo, F.A.; Hojman, S.A.
Title Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy Type
Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 11 Issue 7 Pages
Keywords
Abstract A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000481979000025 Approved
Call Number UAI @ eduardo.moreno @ Serial 1048
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Casimir force induced by electromagnetic wave polarization in Kerr, Godel and Bianchi-I spacetimes Type
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 11 Pages 7 pp
Keywords
Abstract Electromagnetic waves propagation on either rotating or anisotropic spacetime backgrounds (such as Kerr and Gödel metrics, or Bianchi�I metric) produce a reduction of the magnitude of Casimir forces between plates. These

curved spacetimes behave as chiral or birefringent materials producing dispersion of electromagnetic waves, in such a way that right� and left�circularly polarized light waves propagate with different phase velocities. Results are explicitly calculated for discussed cases. The difference on the wavevectors of the two polarized electromagnetic waves produces an abatement of a Casimir force which depends on the interaction between the polarization of electromagnetic

waves and the properties of the spacetime.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1268
Permanent link to this record
 

 
Author Hojmann, S.A.; Asenjo, F.A.
Title Quantum particles that behave as free classical particles Type
Year 2020 Publication PHYSICAL REVIEW A Abbreviated Journal Phys. Rev. A
Volume 102 Issue 5 Pages 052211
Keywords Wave; Generation
Abstract The existence of nonvanishing Bohm potentials, in the Madelung-Bohm version of the Schrödinger equation, allows for the construction of particular solutions for states of quantum particles interacting with nontrivial external potentials that propagate as free classical particles. Such solutions are constructed with phases which satisfy the classical Hamilton-Jacobi for free particles and whose probability densities propagate with constant velocity, as free classical particles do.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1269
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 36 Pages 7 pp
Keywords Schrodinger equation; New exact solutions; Accelerating wavepackets; Bohm potential
Abstract A new approach to find exact solutions to one-dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non-vanishing Bohm potentials. For most of the potentials, no solutions to the Schrodinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non-vanishing Bohm potentials. New examples of this kind are found and discussed. (C) 2020 Elsevier B.V. All rights reserved.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1271
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Bohm potential is real and its effects are measurable Type
Year 2021 Publication Optik Abbreviated Journal Optik
Volume 232 Issue Pages 166341
Keywords Bohm potential; Non-vanishing; Accelerating solutions
Abstract We analyze Bohm potential effects both in the realms of Quantum Mechanics and Optics, as well as in the study of other physical phenomena described in terms of classical and quantum wave equations. We approach this subject by using theoretical arguments as well as experimental evidence. We find that the effects produced by Bohm potential are both theoretically responsible for the early success of Quantum Mechanics correctly describing atomic and nuclear phenomena and, more recently, by confirming surprising accelerating behavior of free waves and particles experimentally, for instance.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4026 ISBN Medium
Area Expedition Conference
Notes WOS:000636139700002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1366
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Propagation of light in linear and quadratic GRIN media: The Bohm potential Type
Year 2021 Publication Optics Communications Abbreviated Journal Opt. Commun.
Volume 490 Issue Pages 126947
Keywords
Abstract It is shown that field propagation in linear and quadratic gradient-index (GRIN) media obeys the same rules of free propagation in the sense that a field propagating in free space has a (mathematical) form that may be exported to those particular GRIN media. The Bohm potential is introduced in order to explain the reason of such behavior: it changes the dynamics by modifying the original potential . The concrete cases of two different initials conditions for each potential are analyzed.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4018 ISBN Medium
Area Expedition Conference
Notes WOS:000664742700011 Approved
Call Number UAI @ alexi.delcanto @ Serial 1424
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Accelerating solutions to diffusion equation Type
Year 2021 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus.
Volume 136 Issue 6 Pages 677
Keywords NONLINEAR DIFFUSIONSIMILARITY SOLUTIONS
Abstract We report accelerating diffusive solutions to the diffusion equation with a constant diffusion tensor. The maximum values of the diffusion density evolve in an accelerating fashion described by Airy functions. We show the diffusive accelerating behavior for one-dimensional systems, as well as for a general three-dimensional case. We also construct a modulated modified form of the diffusion solution that retains the accelerating features.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000664659600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1433
Permanent link to this record
 

 
Author Caerols, H.; Carrasco, R.A.; Asenjo, F.A.
Title Using smartphone photographs of the Moon to acquaint students with non-Euclidean geometry Type
Year 2021 Publication American Journal of Physics Abbreviated Journal Am. J. Phys.
Volume Early Access Issue Pages
Keywords
Abstract Non-Euclidean geometry can be taught to students using astronomical images. By using photographs o the Moon taken with a smartphone through a simple telescope, we were able to introduce these concepts to high-school students and lower-level college students. We teach students how to calculate lengths of mountain ranges or areas of craters on the Moon's surface and introduce ideas of geodesics and spherical triangles. Students can see that accurate measurements cannot be

obtained using at geometry. Instead, by using three{dimensional curved geometry, estimates of lengths and areas can be computed with less than 4% error.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9505 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1447
Permanent link to this record
 

 
Author Asenjo, F.A.; Erices, C.; Gomberoff, A.; Hojman, S.A.; Montecinos, A.
Title Differential geometry approach to asymmetric transmission of light Type
Year 2017 Publication Optics Express Abbreviated Journal Opt. Express
Volume 25 Issue 22 Pages 26405-26416
Keywords
Abstract In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as “transformation optics.” This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material -or more precisely, its constitutive tensor-will not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the “W-tensor.” In the geometric optics approximation we show how the properties of the W-tensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization). (C) 2017 Optical Society of America
Address (up) [Asenjo, Felipe A.; Gomberoff, Andres] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Torres 2640, Santiago, Chile, Email: andres.gomberoff@uai.cl
Corporate Author Thesis
Publisher Optical Soc Amer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes WOS:000413995000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 798
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Birefringent light propagation on anisotropic cosmological backgrounds Type
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 12 pp
Keywords
Abstract Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)-while, for earlier times, it matches a Kasner Universe-is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the “horizon” problem.
Address (up) [Asenjo, Felipe A.; Hojman, Sergio A.] Univ Adolfo Ibanez, UAI Phys Ctr, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000407716200007 Approved
Call Number UAI @ eduardo.moreno @ Serial 756
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title New non-linear modified massless Klein-Gordon equation Type
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 5 pp
Keywords
Abstract The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop “tails” inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved space-times. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential.
Address (up) [Asenjo, Felipe A.; Hojman, Sergio A.] Univ Adolfo Ibanez, UAI Phys Ctr, Santiago, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000414439100003 Approved
Call Number UAI @ eduardo.moreno @ Serial 791
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Generalized Magnetofluid Connections in Relativistic Magnetohydrodynamics Type
Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 114 Issue 11 Pages 5 pp
Keywords
Abstract The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000351507400011 Approved
Call Number UAI @ eduardo.moreno @ Serial 478
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.; Mahajan, S.M.
Title Generalized magnetofluid connections in pair plasmas Type
Year 2015 Publication Physics Of Plasmas Abbreviated Journal Phys. Plasmas
Volume 22 Issue 12 Pages 4 pp
Keywords
Abstract We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found. (C) 2015 AIP Publishing LLC.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Medium
Area Expedition Conference
Notes WOS:000367460400019 Approved
Call Number UAI @ eduardo.moreno @ Serial 573
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Relativistic Magnetic Reconnection in Kerr Spacetime Type
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 5 Pages 5 pp
Keywords
Abstract The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000396415100005 Approved
Call Number UAI @ eduardo.moreno @ Serial 702
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Magnetic connections in curved spacetime Type
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 12 Pages 7 pp
Keywords
Abstract The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between plasma elements is generalized to relativistic plasmas in curved spacetime. The connections between plasma elements, which are established by a covariant connection equation, display a particularly complex structure in curved spacetime. Nevertheless, it is shown that these connections can be interpreted in terms of magnetic field lines alone by adopting a 3 + 1 foliation of spacetime.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000417759400002 Approved
Call Number UAI @ eduardo.moreno @ Serial 785
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Gravitational electromotive force in magnetic reconnection around Schwarzschild black holes Type
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 6 Pages 7 pp
Keywords
Abstract We analytically explore the effects of the gravitational electromotive force on magnetic reconnection around Schwarzschild black holes through a generalized general-relativistic magnetohydrodynamic model that retains two-fluid effects. It is shown that the gravitational electromotive force can couple to collisionless two-fluid effects and drive magnetic reconnection. This is allowed by the departure from quasineutrality in curved spacetime, which is explicitly manifested as the emergence of an effective resistivity in Ohm's law. The departure from quasineutrality is owed to different gravitational pulls experienced by separate parts of the current layer. This produces an enhancement of the reconnecion rate due to purely gravitational effects.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000462917900001 Approved
Call Number UAI @ eduardo.moreno @ Serial 993
Permanent link to this record
 

 
Author Asenjo, F.A.; Mahajan, S.M.
Title Diamagnetic field states in cosmological plasmas Type
Year 2019 Publication Physical Review E Abbreviated Journal Phys. Rev. E
Volume 99 Issue 5 Pages 7 pp
Keywords
Abstract Using a generally covariant electrovortic (magnetofluid) formalism for relativistic plasmas, the dynamical evolution of a generalized vorticity (a combination of the magnetic and kinematic parts) is studied in a cosmological context. We derive macroscopic vorticity and magnetic field structures that can emerge in spatial equilibrium configurations of the relativistic plasma. These fields, however, evolve in time. These magnetic and velocity fields, self-consistently sustained in a plasma with arbitrary thermodynamics, constitute a diamagnetic state in the expanding universe. In particular, we explore a special class of magnetic and velocity field structures supported by a plasma in which the generalized vorticity vanishes. We derive a highly interesting characteristic of such “superconductor-like” fields in a cosmological plasmas in the radiation era in the early universe. In that case, the fields grow proportional to the scale factor, establishing a deep connection between the expanding universe and the primordial magnetic fields.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045 ISBN Medium
Area Expedition Conference
Notes WOS:000467737500016 Approved
Call Number UAI @ eduardo.moreno @ Serial 999
Permanent link to this record
 

 
Author Asenjo, F.A.; Moya, P.S.
Title The contribution of magnetic monopoles to the ponderomotive force Type
Year 2019 Publication Journal Of Physics A-Mathematical And Theoretical Abbreviated Journal J. Phys. A-Math. Theor.
Volume 52 Issue 25 Pages 13 pp
Keywords plasma waves; magnetic monopoles; ponderomotive force
Abstract When magnetic monopoles are assumed to exist in plasma dynamics, the propagation of electromagnetic waves is modified as Maxwell equations acquire a symmetrical structure due to the existence of electric and magnetic charge and current densities. This work presents a theoretical exploration on how far we can push the limits of a plasma theory under the presence of magnetic monopoles. In particular, we study the modification of ponderomotive forces in a plasma composed by electric and magnetic charges. We show that the general ponderomotive force on this plasma depends non-trivially on the magnetic monopoles, through the slow temporal and spatial variations of the electromagnetic field amplitudes. The magnetic charges introduce corrections even if the plasma is unmagnetized. Also, it is shown that the magnetic monopoles also experience a ponderomotive force due to the electrons. This force is in the direction of propagation of the electromagnetic waves.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-8113 ISBN Medium
Area Expedition Conference
Notes WOS:000469448000001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1029
Permanent link to this record
 

 
Author Asenjo, F.A.; Mahajan, S.M.
Title Resonant interaction between dispersive gravitational waves and scalar massive particles Type
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 4 pp
Keywords
Abstract The Klein-Gordon equation is solved in the curved background spacetime created by a dispersive gravitational wave. Unlike solutions of perturbed Einstein equations in vacuum, dispersive gravitational waves do not travel exactly at the speed of light. As a consequence, the gravitational wave can resonantly exchange energy with scalar massive particles. Some details of the resonant interaction are displayed in a calculation demonstrating how relativistic particles (modeled by the Klein-Gordon equation), feeding on such gravitational waves, may be driven to extreme energies.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000518819200001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1160
Permanent link to this record
 

 
Author Asenjo, F.A.; Mahajan, S.M.
Title Relativistic quantum vorticity of the quadratic form of the Dirac equation Type
Year 2015 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 90 Issue 1 Pages 4 pp
Keywords relativistic quantum mechanics; hydrodynamical version; Feynman-GellMann equation
Abstract We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman-Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system.
Address (up) [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: felipe.asenjo@uai.cl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000349301500001 Approved
Call Number UAI @ eduardo.moreno @ Serial 458
Permanent link to this record