|   | 
Details
   web
Records
Author (up) Mahajan, S.M.; Asenjo, F.A.
Title General connected and reconnected fields in plasmas Type
Year 2018 Publication Physics Of Plasmas Abbreviated Journal Phys. Plasmas
Volume 25 Issue 2 Pages 7 pp
Keywords
Abstract For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of “magnetic reconnection” may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection. Published by AIP Publishing.
Address [Mahajan, Swadesh M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA, Email: mahajan@mail.utexas.edu;
Corporate Author Thesis
Publisher Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Medium
Area Expedition Conference
Notes WOS:000426584700020 Approved
Call Number UAI @ eduardo.moreno @ Serial 1038
Permanent link to this record
 

 
Author (up) Mahajan, S.M.; Asenjo, F.A.; Hazeltine, R.D.
Title Comparison of the electron-spin force and radiation reaction force Type
Year 2015 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 446 Issue 4 Pages 4112-4115
Keywords magnetic fields; plasmas; radiation mechanisms: general
Abstract It is shown that the forces that originate from the electron-spin interacting with the electromagnetic field can play, along with the Lorentz force, a fundamentally important role in determining the electron motion in a high energy density plasma embedded in strong high-frequency radiation, a situation that pertains to both laser-produced and astrophysical systems. These forces, for instance, dominate the standard radiation reaction force as long as there is a 'sufficiently' strong ambient magnetic field for affecting spin alignment. The inclusion of spin forces in any advanced modelling of electron dynamics pertaining to high energy density systems (for instance in particle-in-cell codes), therefore, is a must.
Address [Mahajan, Swadesh M.; Hazeltine, Richard D.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA, Email: felipe.asenjo@uai.cl
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000350272400066 Approved
Call Number UAI @ eduardo.moreno @ Serial 462
Permanent link to this record
 

 
Author (up) Munoz, V.; Asenjo, F.A.; Dominguez, M.; Lopez, R.A.; Valdivia, J.A.; Vinas, A.; Hada, T.
Title Large-amplitude electromagnetic waves in magnetized relativistic plasmas with temperature Type
Year 2014 Publication Nonlinear Processes In Geophysics Abbreviated Journal Nonlinear Process Geophys.
Volume 21 Issue 1 Pages 217-236
Keywords
Abstract Propagation of large-amplitude waves in plasmas is subject to several sources of nonlinearity due to relativistic effects, either when particle quiver velocities in the wave field are large, or when thermal velocities are large due to relativistic temperatures. Wave propagation in these conditions has been studied for decades, due to its interest in several contexts such as pulsar emission models, laser-plasma interaction, and extragalactic jets. For large-amplitude circularly polarized waves propagating along a constant magnetic field, an exact solution of the fluid equations can be found for relativistic temperatures. Relativistic thermal effects produce: (a) a decrease in the effective plasma frequency (thus, waves in the electromagnetic branch can propagate for lower frequencies than in the cold case); and (b) a decrease in the upper frequency cutoff for the Alfven branch (thus, Alfven waves are confined to a frequency range that is narrower than in the cold case). It is also found that the Alfven speed decreases with temperature, being zero for infinite temperature. We have also studied the same system, but based on the relativistic Vlasov equation, to include thermal effects along the direction of propagation. It turns out that kinetic and fluid results are qualitatively consistent, with several quantitative differences. Regarding the electromagnetic branch, the effective plasma frequency is always larger in the kinetic model. Thus, kinetic effects reduce the transparency of the plasma. As to the Alfven branch, there is a critical, nonzero value of the temperature at which the Alfven speed is zero. For temperatures above this critical value, the Alfven branch is suppressed; however, if the background magnetic field increases, then Alfven waves can propagate for larger temperatures. There are at least two ways in which the above results can be improved. First, nonlinear decays of the electromagnetic wave have been neglected; second, the kinetic treatment considers thermal effects only along the direction of propagation. We have approached the first subject by studying the parametric decays of the exact wave solution found in the context of fluid theory. The dispersion relation of the decays has been solved, showing several resonant and nonresonant instabilities whose dependence on the wave amplitude and plasma temperature has been studied systematically. Regarding the second subject, we are currently performing numerical 1-D particle in cell simulations, a work that is still in progress, although preliminary results are consistent with the analytical ones.
Address [Munoz, V.; Dominguez, M.; Lopez, R. A.; Valdivia, J. A.] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile, Email: vmunoz@fisica.ciencias.uchile.cl
Corporate Author Thesis
Publisher Copernicus Gesellschaft Mbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1023-5809 ISBN Medium
Area Expedition Conference
Notes WOS:000332337700017 Approved
Call Number UAI @ eduardo.moreno @ Serial 360
Permanent link to this record
 

 
Author (up) Qadir, A.; Asenjo, F.A.; Mahajan, S.M.
Title Magnetic field seed generation in plasmas around charged and rotating black holes Type
Year 2014 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 89 Issue 8 Pages 7 pp
Keywords seed magnetic field; general relativistic drive; Kerr metric
Abstract Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to Reissner-Nordstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the psi N-force produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive.
Address [Qadir, Asghar] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Islamabad 4400, Pakistan, Email: aqadirmath@yahoo.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000343295000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 469
Permanent link to this record
 

 
Author (up) Rubio, C.A.; Asenjo, F.A.; Hojman, S.A.
Title Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy Type
Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 11 Issue 7 Pages
Keywords
Abstract A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000481979000025 Approved
Call Number UAI @ eduardo.moreno @ Serial 1048
Permanent link to this record
 

 
Author (up) Zalaquett, N.; Hojman, S.A.; Asenjo, F.A.
Title Spinning massive test particles in cosmological and general static spherically symmetric spacetimes Type
Year 2014 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 31 Issue 8 Pages 21 pp
Keywords exact solution; conformally flat spacetimes; spinning massive particle; cosmological spacetimes
Abstract A Lagrangian formalism is used to study the motion of a spinning massive particle in Friedmann-Robertson-Walker and Godel spacetimes, as well as in a general Schwarzschild-like spacetime and in static spherically symmetric conformally flat spacetimes. Exact solutions for the motion of the particle and general exact expressions for the momenta and velocities are displayed for different cases. In particular, the solution for the motion in spherically symmetric metrics is presented in the equatorial plane. The exact solutions are found using constants of motion of the particle, namely its mass, its spin, its angular momentum, and a fourth constant, which is its energy when the metric is time-independent, and a different constant otherwise. These constants are associated to Killing vectors. In the case of the motion on the Friedmann-Robertson-Walker metric, a new constant of motion is found. This is the fourth constant which generalizes previously known results obtained for spinless particles. In the case of general Schwarzschild-like spacetimes, our results allow for the exploration of the case of the Reissner-Nordstrom-(Anti) de Sitter metric. Finally, for the case of the conformally flat spacetimes, the solution is explicitly evaluated for different metric tensors associated to a universe filled with static perfect fluids and electromagnetic radiation. For some combination of the values of the constants of motion the particle trajectories may exhibit spacelike velocity vectors in portions of the trajectories.
Address [Zalaquett, Nicolas] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile, Email: nzalaque@puc.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000334418900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 373
Permanent link to this record