|   | 
Details
   web
Records
Author Hojman, S.A.; Asenjo, F.A.
Title Dual wavefunctions in two-dimensional quantum mechanics Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 13 Pages 5 pp
Keywords (up) Schrodinger equation; Dual solution; Bohm potential; Two-dimensions; Optics
Abstract It is shown that the Schrodinger equation for a large family of pairs of two-dimensional quantum potentials possess wavefunctions for which the amplitude and the phase are interchangeable, producing two different solutions which are dual to each other. This is a property of solutions with vanishing Bohm potential. These solutions can be extended to three-dimensional systems. We explicitly calculate dual solutions for physical systems, such as the repulsive harmonic oscillator and the two-dimensional hydrogen atom. These dual wavefunctions are also solutions of an analogue optical system in the eikonal limit. In this case, the potential is related to the refractive index, allowing the study of this two-dimensional dual wavefunction solutions with an optical (analogue) system. (C) 2020 Elsevier B.V. All rights reserved.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7491169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes WOS:000525434900002 Approved
Call Number UAI @ eduardo.moreno @ Serial 1152
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 36 Pages 7 pp
Keywords (up) Schrodinger equation; New exact solutions; Accelerating wavepackets; Bohm potential
Abstract A new approach to find exact solutions to one-dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non-vanishing Bohm potentials. For most of the potentials, no solutions to the Schrodinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non-vanishing Bohm potentials. New examples of this kind are found and discussed. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1271
Permanent link to this record
 

 
Author Qadir, A.; Asenjo, F.A.; Mahajan, S.M.
Title Magnetic field seed generation in plasmas around charged and rotating black holes Type
Year 2014 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 89 Issue 8 Pages 7 pp
Keywords (up) seed magnetic field; general relativistic drive; Kerr metric
Abstract Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to Reissner-Nordstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the psi N-force produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive.
Address [Qadir, Asghar] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Islamabad 4400, Pakistan, Email: aqadirmath@yahoo.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000343295000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 469
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Spinning particles coupled to gravity and the validity of the universality of free fall Type
Year 2017 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 11 Pages 8 pp
Keywords (up) spin-gravity coupling; spinning massive particle; Lagrangian description
Abstract Recent experimental work has determined that free falling Rb-87 atoms on Earth, with vertically aligned spins, follow geodesics, thus apparently ruling out spin-gravitation interactions. It is showed that while some spinning matter models coupled to gravitation referenced to in that work seem to be ruled out by the experiment, those same experimental results confirm theoretical results derived from a Lagrangian description of spinning particles coupled to gravity constructed over forty years ago. A proposal to carry out (similar but) different experiments which will help to test the validity of the universality of free fall as opposed to the correctness of the aforementioned Lagrangian theory, is presented.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000402399700011 Approved
Call Number UAI @ eduardo.moreno @ Serial 735
Permanent link to this record
 

 
Author Hojman, S.J.; Moya-Cessa, H.M.; Soto-Eguibar, F.; Asenjo, F.A.
Title Time-dependent harmonic oscillators and SUSY in time domain Type
Year 2021 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 96 Issue 12 Pages 125218
Keywords (up) time domain super-symmetry; time dependent harmonic oscillator; Bohm potential; Ermakov-lewis invariant
Abstract We show that the time-dependent harmonic oscillator has a repulsive or inverted oscillator as a time domain SUSY-like partner. Examples of several kinds of super-symmetrical time dependent frequency systems are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000698808000001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1467
Permanent link to this record
 

 
Author Hojmann, S.A.; Asenjo, F.A.
Title Quantum particles that behave as free classical particles Type
Year 2020 Publication PHYSICAL REVIEW A Abbreviated Journal Phys. Rev. A
Volume 102 Issue 5 Pages 052211
Keywords (up) Wave; Generation
Abstract The existence of nonvanishing Bohm potentials, in the Madelung-Bohm version of the Schrödinger equation, allows for the construction of particular solutions for states of quantum particles interacting with nontrivial external potentials that propagate as free classical particles. Such solutions are constructed with phases which satisfy the classical Hamilton-Jacobi for free particles and whose probability densities propagate with constant velocity, as free classical particles do.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1269
Permanent link to this record