|   | 
Details
   web
Records
Author Rubio, C.A.; Asenjo, F.A.; Hojman, S.A.
Title Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy Type
Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry
Volume 11 Issue 7 Pages
Keywords
Abstract A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000481979000025 Approved
Call Number UAI @ eduardo.moreno @ Serial 1048
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Casimir force induced by electromagnetic wave polarization in Kerr, Godel and Bianchi-I spacetimes Type
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 11 Pages 7 pp
Keywords
Abstract Electromagnetic waves propagation on either rotating or anisotropic spacetime backgrounds (such as Kerr and Gödel metrics, or Bianchi�I metric) produce a reduction of the magnitude of Casimir forces between plates. These

curved spacetimes behave as chiral or birefringent materials producing dispersion of electromagnetic waves, in such a way that right� and left�circularly polarized light waves propagate with different phase velocities. Results are explicitly calculated for discussed cases. The difference on the wavevectors of the two polarized electromagnetic waves produces an abatement of a Casimir force which depends on the interaction between the polarization of electromagnetic

waves and the properties of the spacetime.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1268
Permanent link to this record
 

 
Author Hojmann, S.A.; Asenjo, F.A.
Title Quantum particles that behave as free classical particles Type
Year 2020 Publication PHYSICAL REVIEW A Abbreviated Journal Phys. Rev. A
Volume 102 Issue 5 Pages 052211
Keywords Wave; Generation
Abstract The existence of nonvanishing Bohm potentials, in the Madelung-Bohm version of the Schrödinger equation, allows for the construction of particular solutions for states of quantum particles interacting with nontrivial external potentials that propagate as free classical particles. Such solutions are constructed with phases which satisfy the classical Hamilton-Jacobi for free particles and whose probability densities propagate with constant velocity, as free classical particles do.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1269
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 36 Pages 7 pp
Keywords Schrodinger equation; New exact solutions; Accelerating wavepackets; Bohm potential
Abstract A new approach to find exact solutions to one-dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non-vanishing Bohm potentials. For most of the potentials, no solutions to the Schrodinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non-vanishing Bohm potentials. New examples of this kind are found and discussed. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1271
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Bohm potential is real and its effects are measurable Type
Year 2021 Publication Optik Abbreviated Journal Optik
Volume 232 Issue Pages 166341
Keywords Bohm potential; Non-vanishing; Accelerating solutions
Abstract We analyze Bohm potential effects both in the realms of Quantum Mechanics and Optics, as well as in the study of other physical phenomena described in terms of classical and quantum wave equations. We approach this subject by using theoretical arguments as well as experimental evidence. We find that the effects produced by Bohm potential are both theoretically responsible for the early success of Quantum Mechanics correctly describing atomic and nuclear phenomena and, more recently, by confirming surprising accelerating behavior of free waves and particles experimentally, for instance.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4026 ISBN Medium
Area Expedition Conference
Notes WOS:000636139700002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1366
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Propagation of light in linear and quadratic GRIN media: The Bohm potential Type
Year 2021 Publication Optics Communications Abbreviated Journal Opt. Commun.
Volume 490 Issue Pages 126947
Keywords
Abstract It is shown that field propagation in linear and quadratic gradient-index (GRIN) media obeys the same rules of free propagation in the sense that a field propagating in free space has a (mathematical) form that may be exported to those particular GRIN media. The Bohm potential is introduced in order to explain the reason of such behavior: it changes the dynamics by modifying the original potential . The concrete cases of two different initials conditions for each potential are analyzed.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4018 ISBN Medium
Area Expedition Conference
Notes WOS:000664742700011 Approved
Call Number UAI @ alexi.delcanto @ Serial 1424
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Accelerating solutions to diffusion equation Type
Year 2021 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus.
Volume 136 Issue 6 Pages 677
Keywords NONLINEAR DIFFUSIONSIMILARITY SOLUTIONS
Abstract We report accelerating diffusive solutions to the diffusion equation with a constant diffusion tensor. The maximum values of the diffusion density evolve in an accelerating fashion described by Airy functions. We show the diffusive accelerating behavior for one-dimensional systems, as well as for a general three-dimensional case. We also construct a modulated modified form of the diffusion solution that retains the accelerating features.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000664659600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1433
Permanent link to this record
 

 
Author Caerols, H.; Carrasco, R.A.; Asenjo, F.A.
Title Using smartphone photographs of the Moon to acquaint students with non-Euclidean geometry Type
Year 2021 Publication American Journal of Physics Abbreviated Journal Am. J. Phys.
Volume Early Access Issue Pages
Keywords
Abstract Non-Euclidean geometry can be taught to students using astronomical images. By using photographs o the Moon taken with a smartphone through a simple telescope, we were able to introduce these concepts to high-school students and lower-level college students. We teach students how to calculate lengths of mountain ranges or areas of craters on the Moon's surface and introduce ideas of geodesics and spherical triangles. Students can see that accurate measurements cannot be

obtained using at geometry. Instead, by using three{dimensional curved geometry, estimates of lengths and areas can be computed with less than 4% error.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9505 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1447
Permanent link to this record
 

 
Author Caerols, H.; Asenjo, F.A.
Title Estimating the Moon-to-Earth Radius Ratio with a Smartphone, a Telescope, and an Eclipse Type
Year 2020 Publication Physics Teacher Abbreviated Journal Phys. Teach.
Volume 58 Issue 7 Pages 497-501
Keywords
Abstract From ancient times, the different features of planets and moons have created a huge interest. Aristarchus was one of the first to study the relative relations among Earth, Moon, and Sun. This interest has remained until today, and therefore it is always relevant to make this knowledge more appealing to the younger generations. Nowadays, smartphone technology has become an important tool to teach physics, and this gives us a huge opportunity to bring science closer to students in a simpler manner. In this work, we show how simple photographs of a partial lunar eclipse are sufficiently good to estimate the ratio between the Moon and Earth radii. After taking the photographs, the procedure for the calculation is straightforward and it can be reproduced easily in a one–hour class
Address [Caerols, Hugo; Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: felipe.asenjo@uai.cl
Corporate Author Thesis
Publisher (up) Amer Assn Physics Teachers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-921x ISBN Medium
Area Expedition Conference
Notes WOS:000576343700015 Approved
Call Number UAI @ alexi.delcanto @ Serial 1234
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.; Mahajan, S.M.
Title Generalized magnetofluid connections in pair plasmas Type
Year 2015 Publication Physics Of Plasmas Abbreviated Journal Phys. Plasmas
Volume 22 Issue 12 Pages 4 pp
Keywords
Abstract We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found. (C) 2015 AIP Publishing LLC.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Medium
Area Expedition Conference
Notes WOS:000367460400019 Approved
Call Number UAI @ eduardo.moreno @ Serial 573
Permanent link to this record
 

 
Author Mahajan, S.M.; Asenjo, F.A.
Title A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave Type
Year 2016 Publication Physics Of Plasmas Abbreviated Journal Phys. Plasmas
Volume 23 Issue 5 Pages 12 pp
Keywords
Abstract A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M = root m(2) + q(2)Q(2). Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results-a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields. (C) 2016 AIP Publishing LLC.
Address [Mahajan, Swadesh M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA, Email: mahajan@mail.utexas.edu;
Corporate Author Thesis
Publisher (up) Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Medium
Area Expedition Conference
Notes WOS:000378427900152 Approved
Call Number UAI @ eduardo.moreno @ Serial 638
Permanent link to this record
 

 
Author Mahajan, S.M.; Asenjo, F.A.
Title General connected and reconnected fields in plasmas Type
Year 2018 Publication Physics Of Plasmas Abbreviated Journal Phys. Plasmas
Volume 25 Issue 2 Pages 7 pp
Keywords
Abstract For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of “magnetic reconnection” may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection. Published by AIP Publishing.
Address [Mahajan, Swadesh M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA, Email: mahajan@mail.utexas.edu;
Corporate Author Thesis
Publisher (up) Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Medium
Area Expedition Conference
Notes WOS:000426584700020 Approved
Call Number UAI @ eduardo.moreno @ Serial 1038
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Phenomenological dynamics of COVID-19 pandemic: Meta-analysis for adjustment parameters Type
Year 2020 Publication Chaos Abbreviated Journal Chaos
Volume 30 Issue 10 Pages 12 pp
Keywords
Abstract We present a phenomenological procedure of dealing with the COVID-19 (coronavirus disease 2019) data provided by government health agencies of 11 different countries. Usually, the exact or approximate solutions of susceptible-infected-recovered (or other) model(s) are obtained fitting the data by adjusting the time-independent parameters that are included in those models. Instead of that, in this work, we introduce dynamical parameters whose time-dependence may be phenomenologically obtained by adequately extrapolating a chosen subset of the daily provided data. This phenomenological approach works extremely well to properly adjust the number of infected (and removed) individuals in time for the countries we consider. Besides, it can handle the sub-epidemic events that some countries may experience. In this way, we obtain the evolution of the pandemic without using any a priori model based on differential equations.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Lib, Dept Ciencias, Santiago 7491169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1054-1500 ISBN Medium
Area Expedition Conference
Notes WOS:000585761000001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1257
Permanent link to this record
 

 
Author Comisso, L.; Asenjo, F.A.
Title Thermal-Inertial Effects on Magnetic Reconnection in Relativistic Pair Plasmas Type
Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 113 Issue 4 Pages 5 pp
Keywords
Abstract The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.
Address [Comisso, Luca] Politecn Torino, Dipartimento Energia, I-10129 Turin, Italy, Email: luca.comisso@polito.it;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000339620300007 Approved
Call Number UAI @ eduardo.moreno @ Serial 393
Permanent link to this record
 

 
Author Braun, S.; Asenjo, F.A.; Mahajan, S.M.
Title Comment on “Spin-Gradient-Driven Light Amplification in a Quantum Plasma” Reply Type
Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 112 Issue 12 Pages 1 pp
Keywords
Abstract
Address [Braun, S.; Asenjo, F. A.; Mahajan, S. M.] Univ Texas AustinStudies, Inst Fus Studies, Austin, TX 78712 USA, Email: faz@physics.utexas.edu;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000333921000007 Approved
Call Number UAI @ eduardo.moreno @ Serial 471
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Generalized Magnetofluid Connections in Relativistic Magnetohydrodynamics Type
Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 114 Issue 11 Pages 5 pp
Keywords
Abstract The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000351507400011 Approved
Call Number UAI @ eduardo.moreno @ Serial 478
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Supersymmetric Majorana quantum cosmologies Type
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 8 Pages 7 pp
Keywords
Abstract The Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker universe in the presence of a quintessence scalar field are shown to be described in a compact way, formally identical to the dynamics of a relativistic particle moving on a two-dimensional spacetime. The correct Lagrangian for the system is presented and used to construct a spinor quantum cosmology theory using Breit's prescription. The theory is supersymmetric when written in the Majorana representation. The spinor field components interact through a potential that correlates the spacetime metric and the quintessence. An exact supersymmetric solution for k = 0 case is exhibited. This quantum cosmology model may be interpreted as a theory of interacting universes.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000362901900005 Approved
Call Number UAI @ eduardo.moreno @ Serial 544
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Comment on “Highly relativistic spin-gravity coupling for fermions” Type
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 2 Pages 4 pp
Keywords
Abstract We exhibit difficulties of different sorts which appear when using the Mathisson-Papapetrou equations, in particular in the description of highly relativistic particles presented in R. Plyatsko and M. Fenyk [Phys. Rev. D 91, 064033 (2015)]. We compare some results of this theory and of the aforementioned work with the ones obtained using a Lagrangian formulation for massive spinning particles and show that the issues mentioned in the preceding sentence do not appear in the Lagrangian treatment.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000369327900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 640
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title Relativistic Magnetic Reconnection in Kerr Spacetime Type
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 5 Pages 5 pp
Keywords
Abstract The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000396415100005 Approved
Call Number UAI @ eduardo.moreno @ Serial 702
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Birefringent light propagation on anisotropic cosmological backgrounds Type
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 12 pp
Keywords
Abstract Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)-while, for earlier times, it matches a Kasner Universe-is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the “horizon” problem.
Address [Asenjo, Felipe A.; Hojman, Sergio A.] Univ Adolfo Ibanez, UAI Phys Ctr, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000407716200007 Approved
Call Number UAI @ eduardo.moreno @ Serial 756
Permanent link to this record