|   | 
Details
   web
Records
Author Hojmann, S.A.; Asenjo, F.A.
Title (up) Quantum particles that behave as free classical particles Type
Year 2020 Publication PHYSICAL REVIEW A Abbreviated Journal Phys. Rev. A
Volume 102 Issue 5 Pages 052211
Keywords Wave; Generation
Abstract The existence of nonvanishing Bohm potentials, in the Madelung-Bohm version of the Schrödinger equation, allows for the construction of particular solutions for states of quantum particles interacting with nontrivial external potentials that propagate as free classical particles. Such solutions are constructed with phases which satisfy the classical Hamilton-Jacobi for free particles and whose probability densities propagate with constant velocity, as free classical particles do.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1269
Permanent link to this record
 

 
Author Ekman, R.; Asenjo, F.A.; Zamanian, J.
Title (up) Relativistic kinetic equation for spin-1/2 particles in the long-scale-length approximation Type
Year 2017 Publication Physical Review E Abbreviated Journal Phys. Rev. E
Volume 96 Issue 2 Pages 8 pp
Keywords
Abstract In this paper, we derive a fully relativistic kinetic theory for spin-1/2 particles and its coupling to Maxwell's equations, valid in the long-scale-length limit, where the fields vary on a scale much longer than the localization of the particles; we work to first order in (h) over bar. Our starting point is a Foldy-Wouthuysen (FW) transformation, applicable to this regime, of the Dirac Hamiltonian. We derive the corresponding evolution equation for the Wigner quasidistribution in an external electromagnetic field. Using a Lagrangian method we find expressions for the charge and current densities, expressed as free and bound parts. It is furthermore found that the velocity is nontrivially related to the momentum variable, with the difference depending on the spin and the external electromagnetic fields. This fact that has previously been discussed as “hidden momentum” and is due to that the FW transformation maps pointlike particles to particle clouds for which the prescription of minimal coupling is incorrect, as they have multipole moments. We express energy and momentum conservation for the system of particles and the electromagnetic field, and discuss our results in the context of the Abraham-Minkowski dilemma.
Address [Ekman, R.; Zamanian, J.] Umea Univ, Dept Phys, SE-90187 Umea, Sweden
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045 ISBN Medium
Area Expedition Conference
Notes WOS:000408118100012 Approved
Call Number UAI @ eduardo.moreno @ Serial 759
Permanent link to this record
 

 
Author Asenjo, F.A.; Comisso, L.
Title (up) Relativistic Magnetic Reconnection in Kerr Spacetime Type
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 5 Pages 5 pp
Keywords
Abstract The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000396415100005 Approved
Call Number UAI @ eduardo.moreno @ Serial 702
Permanent link to this record
 

 
Author Asenjo, F.A.; Mahajan, S.M.
Title (up) Relativistic quantum vorticity of the quadratic form of the Dirac equation Type
Year 2015 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 90 Issue 1 Pages 4 pp
Keywords relativistic quantum mechanics; hydrodynamical version; Feynman-GellMann equation
Abstract We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman-Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: felipe.asenjo@uai.cl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000349301500001 Approved
Call Number UAI @ eduardo.moreno @ Serial 458
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title (up) Reply to Comment on 'Do electromagnetic waves always propagate along null geodesics?' Reply Type
Year 2021 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 38 Issue 23 Pages 238002
Keywords couplings; electromagnetic wave; propagation; consistency; geometrical; eikonal limit
Abstract A reply to the previous article commenting on non-geodesical propagation of electromagnetic fields on gravitational backgrounds and the eikonal limit are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000728942300001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1512
Permanent link to this record
 

 
Author Asenjo, F.A.; Mahajan, S.M.
Title (up) Resonant interaction between dispersive gravitational waves and scalar massive particles Type
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 4 pp
Keywords
Abstract The Klein-Gordon equation is solved in the curved background spacetime created by a dispersive gravitational wave. Unlike solutions of perturbed Einstein equations in vacuum, dispersive gravitational waves do not travel exactly at the speed of light. As a consequence, the gravitational wave can resonantly exchange energy with scalar massive particles. Some details of the resonant interaction are displayed in a calculation demonstrating how relativistic particles (modeled by the Klein-Gordon equation), feeding on such gravitational waves, may be driven to extreme energies.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000518819200001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1160
Permanent link to this record
 

 
Author Zalaquett, N.; Hojman, S.A.; Asenjo, F.A.
Title (up) Spinning massive test particles in cosmological and general static spherically symmetric spacetimes Type
Year 2014 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 31 Issue 8 Pages 21 pp
Keywords exact solution; conformally flat spacetimes; spinning massive particle; cosmological spacetimes
Abstract A Lagrangian formalism is used to study the motion of a spinning massive particle in Friedmann-Robertson-Walker and Godel spacetimes, as well as in a general Schwarzschild-like spacetime and in static spherically symmetric conformally flat spacetimes. Exact solutions for the motion of the particle and general exact expressions for the momenta and velocities are displayed for different cases. In particular, the solution for the motion in spherically symmetric metrics is presented in the equatorial plane. The exact solutions are found using constants of motion of the particle, namely its mass, its spin, its angular momentum, and a fourth constant, which is its energy when the metric is time-independent, and a different constant otherwise. These constants are associated to Killing vectors. In the case of the motion on the Friedmann-Robertson-Walker metric, a new constant of motion is found. This is the fourth constant which generalizes previously known results obtained for spinless particles. In the case of general Schwarzschild-like spacetimes, our results allow for the exploration of the case of the Reissner-Nordstrom-(Anti) de Sitter metric. Finally, for the case of the conformally flat spacetimes, the solution is explicitly evaluated for different metric tensors associated to a universe filled with static perfect fluids and electromagnetic radiation. For some combination of the values of the constants of motion the particle trajectories may exhibit spacelike velocity vectors in portions of the trajectories.
Address [Zalaquett, Nicolas] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile, Email: nzalaque@puc.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000334418900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 373
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title (up) Spinning particles coupled to gravity and the validity of the universality of free fall Type
Year 2017 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 11 Pages 8 pp
Keywords spin-gravity coupling; spinning massive particle; Lagrangian description
Abstract Recent experimental work has determined that free falling Rb-87 atoms on Earth, with vertically aligned spins, follow geodesics, thus apparently ruling out spin-gravitation interactions. It is showed that while some spinning matter models coupled to gravitation referenced to in that work seem to be ruled out by the experiment, those same experimental results confirm theoretical results derived from a Lagrangian description of spinning particles coupled to gravity constructed over forty years ago. A proposal to carry out (similar but) different experiments which will help to test the validity of the universality of free fall as opposed to the correctness of the aforementioned Lagrangian theory, is presented.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000402399700011 Approved
Call Number UAI @ eduardo.moreno @ Serial 735
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title (up) Supersymmetric Majorana quantum cosmologies Type
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 8 Pages 7 pp
Keywords
Abstract The Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker universe in the presence of a quintessence scalar field are shown to be described in a compact way, formally identical to the dynamics of a relativistic particle moving on a two-dimensional spacetime. The correct Lagrangian for the system is presented and used to construct a spinor quantum cosmology theory using Breit's prescription. The theory is supersymmetric when written in the Majorana representation. The spinor field components interact through a potential that correlates the spacetime metric and the quintessence. An exact supersymmetric solution for k = 0 case is exhibited. This quantum cosmology model may be interpreted as a theory of interacting universes.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000362901900005 Approved
Call Number UAI @ eduardo.moreno @ Serial 544
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title (up) Supersymmetric relativistic quantum mechanics in time-domain Type
Year 2022 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 450 Issue Pages 128371
Keywords Supersymmetry; Time-domain; Neutrino oscillation
Abstract A supersymmetric relativistic quantum theory in the temporal domain is developed for bi-spinor fields satisfying the Dirac equation. The simplest time-domain supersymmetric theory can be postulated for fields with time-dependent mass, showing an equivalence with the bosonic supersymmetric theory in time-domain. Solutions are presented and they are used to produce probability oscillations between mass states. As an application of this idea, we study the two-neutrino oscillation problem, showing that flavour state oscillations may emerge from the supersymmetry originated by the time-dependence of the unique mass of the neutrino.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes WOS:000860777300004 Approved
Call Number UAI @ alexi.delcanto @ Serial 1643
Permanent link to this record
 

 
Author Asenjo, F.A.; Moya, P.S.
Title (up) The contribution of magnetic monopoles to the ponderomotive force Type
Year 2019 Publication Journal Of Physics A-Mathematical And Theoretical Abbreviated Journal J. Phys. A-Math. Theor.
Volume 52 Issue 25 Pages 13 pp
Keywords plasma waves; magnetic monopoles; ponderomotive force
Abstract When magnetic monopoles are assumed to exist in plasma dynamics, the propagation of electromagnetic waves is modified as Maxwell equations acquire a symmetrical structure due to the existence of electric and magnetic charge and current densities. This work presents a theoretical exploration on how far we can push the limits of a plasma theory under the presence of magnetic monopoles. In particular, we study the modification of ponderomotive forces in a plasma composed by electric and magnetic charges. We show that the general ponderomotive force on this plasma depends non-trivially on the magnetic monopoles, through the slow temporal and spatial variations of the electromagnetic field amplitudes. The magnetic charges introduce corrections even if the plasma is unmagnetized. Also, it is shown that the magnetic monopoles also experience a ponderomotive force due to the electrons. This force is in the direction of propagation of the electromagnetic waves.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-8113 ISBN Medium
Area Expedition Conference
Notes WOS:000469448000001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1029
Permanent link to this record
 

 
Author Comisso, L.; Asenjo, F.A.
Title (up) Thermal-Inertial Effects on Magnetic Reconnection in Relativistic Pair Plasmas Type
Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 113 Issue 4 Pages 5 pp
Keywords
Abstract The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.
Address [Comisso, Luca] Politecn Torino, Dipartimento Energia, I-10129 Turin, Italy, Email: luca.comisso@polito.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000339620300007 Approved
Call Number UAI @ eduardo.moreno @ Serial 393
Permanent link to this record
 

 
Author Hojman, S.J.; Moya-Cessa, H.M.; Soto-Eguibar, F.; Asenjo, F.A.
Title (up) Time-dependent harmonic oscillators and SUSY in time domain Type
Year 2021 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 96 Issue 12 Pages 125218
Keywords time domain super-symmetry; time dependent harmonic oscillator; Bohm potential; Ermakov-lewis invariant
Abstract We show that the time-dependent harmonic oscillator has a repulsive or inverted oscillator as a time domain SUSY-like partner. Examples of several kinds of super-symmetrical time dependent frequency systems are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000698808000001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1467
Permanent link to this record
 

 
Author Moya-Cessa, H.M.; Asenjo, F.A.; Hojman, S.A.; Soto-Eguibar, F.
Title (up) Two-mode squeezed state generation using the Bohm potential Type
Year 2022 Publication Modern Physics Letters B Abbreviated Journal Mod. Phys. Lett. B
Volume 36 Issue 09 Pages 2250025
Keywords Time-dependent coupled harmonic oscillator; Bohm potential; entangled states; two-mode squeezed states
Abstract We show that two-mode squeezed vacuum-like states may be engineered in the Bohm-Madelung formalism by adequately choosing the phase of the wave function. The difference between our wave function and the one of the squeezed vacuum states is given precisely by the phase we selected. We would like to stress that the engineering of two-mode vacuum states is possible due to the existence of the Bohm potential, and it is relevant because of its potential use in the propagation of optical fields, where it may render a variety of applications in optics. The approach to generate non-classical states, namely, two-mode squeezed states of a quantum mechanical system is one of the first applications of the Madelung-Bohm formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9849 ISBN Medium
Area Expedition Conference
Notes WOS:000782958100001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1572
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title (up) Unification of massless field equations solutions for any spin Type
Year 2022 Publication Epl Abbreviated Journal Epl
Volume 137 Issue 2 Pages 24001
Keywords QUANTIZATION
Abstract A unification in terms of exact solutions for massless Klein-Gordon, Dirac, Maxwell, Rarita-Schwinger, Einstein, and bosonic and fermionic fields of any spin is presented. The method is based on writing all of the relevant dynamical fields in terms of products and derivatives of pre-potential functions, which satisfy the d'Alembert equation. The coupled equations satisfied by the pre-potentials are non-linear. Remarkably, there are particular solutions of (gradient) orthogonal pre-potentials that satisfy the usual wave equation which may be used to construct exact non-trivial solutions to Klein-Gordon, Dirac, Maxwell, Rarita-Schwinger, (linearized and full) Einstein and any spin bosonic and fermionic field equations, thus giving rise to a unification of the solutions of all massless field equations for any spin. Some solutions written in terms of orthogonal prepotentials are presented. Relations of this method to previously developed ones, as well as to other subjects in physics are pointed out.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Medium
Area Expedition Conference
Notes WOS:000780902300001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1555
Permanent link to this record
 

 
Author Caerols, H.; Carrasco, R.A.; Asenjo, F.A.
Title (up) Using smartphone photographs of the Moon to acquaint students with non-Euclidean geometry Type
Year 2021 Publication American Journal of Physics Abbreviated Journal Am. J. Phys.
Volume 89 Issue 12 Pages 1079-1085
Keywords
Abstract Non-Euclidean geometry can be taught to students using astronomical images. By using photographs o the Moon taken with a smartphone through a simple telescope, we were able to introduce these concepts to high-school students and lower-level college students. We teach students how to calculate lengths of mountain ranges or areas of craters on the Moon's surface and introduce ideas of geodesics and spherical triangles. Students can see that accurate measurements cannot be

obtained using at geometry. Instead, by using three{dimensional curved geometry, estimates of lengths and areas can be computed with less than 4% error.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9505 ISBN Medium
Area Expedition Conference
Notes WOS:000757066700003 Approved
Call Number UAI @ alexi.delcanto @ Serial 1447
Permanent link to this record