toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Babonneau, F.; Barrera, J.; Toledo, J. doi  openurl
  Title Decarbonizing the Chilean Electric Power System: A Prospective Analysis of Alternative Carbon Emissions Policies Type
  Year 2021 Publication Energies Abbreviated Journal Energies  
  Volume 14 Issue 16 Pages 4768  
  Keywords ETEM model; 100% renewable; net zero emission; carbon tax; carbon capture and storage  
  Abstract In this paper, we investigate potential pathways for achieving deep reductions in CO2 emissions by 2050 in the Chilean electric power system. We simulate the evolution of the power system using a long-term planning model for policy analysis that identifies investments and operation strategies to meet demand and CO2 emissions reductions at the lowest possible cost. The model considers a simplified representation of the main transmission network and representative days to simulate operations considering the variability of demand and renewable resources at different geographical locations. We perform a scenario analysis assuming different ambitious renewable energy and emission reduction targets by 2050. As observed in other studies, we show that the incremental cost of reducing CO2 emissions without carbon capture or offset alternatives increases significantly as the system approaches zero emissions. Indeed, the carbon tax is multiplied by a factor of 4 to eliminate the last Mt of CO2 emissions, i.e., from 2000 to almost 8500 USD/tCO(2) in 2050. This result highlights the importance of implementing technology-neutral mechanisms that help investors identify the most cost-efficient actions to reduce CO2 emissions. Our analysis shows that Carbon Capture and Storage could permit to divide by more than two the total system cost of a 100% renewable scenario. Furthermore, it also illustrates the importance of implementing economy-wide carbon emissions policies that ensure that the incremental costs to reduce CO2 emissions are roughly similar across different sectors of the economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000689092700001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1450  
Permanent link to this record
 

 
Author (up) Ferrada, F.; Babonneau, F.; Homem-de-Mello, T.; Jalil-Vega, F. doi  openurl
  Title The role of hydrogen for deep decarbonization of energy systems: A Chilean case study Type
  Year 2023 Publication Energy Policy Abbreviated Journal Energy Policy  
  Volume 177 Issue Pages 113536  
  Keywords Energy transition; Chilean energy system; Green hydrogen; Transport; Energy systems model; Energy planning  
  Abstract In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile, a country with a high renewable potential, under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors, such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country, (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production, (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and, (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply, especially for the most stringent emission reduction objectives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000966529800001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1778  
Permanent link to this record
 

 
Author (up) Ferrada, F.; Babonneau, F.; Homem-de-Mello, T.; Jalil-Vega, F. doi  openurl
  Title Energy planning policies for residential and commercial sectors under ambitious global and local emissions objectives: A Chilean case study Type
  Year 2022 Publication Journal Of Cleaner Production Abbreviated Journal J. Clean. Prod.  
  Volume 350 Issue Pages 131299  
  Keywords ETEM model; Zero-emission target; Long-term energy systems models; Decarbonization; Air pollution; Heat decarbonization  
  Abstract Chile is currently engaged in an energy transition process to meet ambitious greenhouse gas reductions and improved air quality indices. In this paper, we apply a long-term energy planning model, with the objective of finding the set of technologies that meet strong reductions of CO2 emissions and of local PM2.5 concentrations. For this purpose, we use the existing ETEM-Chile (Energy-Technology-Environment-Model) model which considers a simplified version of the Chilean electricity sector that we extend to the residential and commercial sectors and to local concentration considerations. We propose an original approach to integrate in the same framework local and global emission constraints. Results show that to meet the goal of zero emissions by 2050, electrification of end-use demands increases up to 49.2% with a strong growth of the CO2 marginal cost. It should be noted that this electrification rate is much lower than government projections and those usually found in the literature, in certain geographic areas in southern Chile with a wide availability of firewood for residential heating. Regarding local PM2.5 concentrations, our analysis shows that even without a specific emission reduction target, acceptable PM2.5 concentrations are achieved by 2045, due to first the emergence of more efficient, cleaner and cost-effective end-use technologies, in particular, residential firewood heaters, and second the use of drier and therefore less contaminating firewood. Achieving acceptable air quality as early as 2030 is also possible but comes with a high marginal cost of PM2.5 concentration. Our results illustrate the need for implementing effective public policies to (i) regulate the firewood heating market to increase its production and improve its environmental quality and (ii) incentivize the installation of efficient firewood heaters in the residential sector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000814826300001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1592  
Permanent link to this record
 

 
Author (up) Guevara, E.; Babonneau, F.; Homem-de-Mello, T.; Moret, S. doi  openurl
  Title A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty Type
  Year 2020 Publication Applied Energy Abbreviated Journal Appl. Energy  
  Volume 271 Issue Pages 18 pp  
  Keywords Strategic energy planning; Electricity generation; Uncertainty; Distributionally robust optimization; Machine learning  
  Abstract This paper investigates how the choice of stochastic approaches and distribution assumptions impacts strategic investment decisions in energy planning problems. We formulate a two-stage stochastic programming model assuming different distributions for the input parameters and show that there is significant discrepancy among the associated stochastic solutions and other robust solutions published in the literature. To remedy this sensitivity issue, we propose a combined machine learning and distributionally robust optimization (DRO) approach which produces more robust and stable strategic investment decisions with respect to uncertainty assumptions. DRO is applied to deal with ambiguous probability distributions and Machine Learning is used to restrict the DRO model to a subset of important uncertain parameters ensuring computational tractability. Finally, we perform an out-of-sample simulation process to evaluate solutions performances. The Swiss energy system is used as a case study all along the paper to validate the approach.  
  Address [Guevara, Esnil] Univ Adolfo Ibanez, PhD Program Ind Engn & Operat Res, Santiago, Chile, Email: frederic.babonneau@uai.cl  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540436500003 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: