
Records 
Links 

Author 
Becker, F.; Kosowski, A.; Matamala, M.; Nisse, N.; Rapaport, I.; Suchan, K.; Todinca, I. 


Title 
Allowing each node to communicate only once in a distributed system: shared whiteboard models 
Type 


Year 
2015 
Publication 
Distributed Computing 
Abbreviated Journal 
Distrib. Comput. 


Volume 
28 
Issue 
3 
Pages 
189200 


Keywords 
Distributed computing; Local computation; Graph properties; Bounded communication 


Abstract 
In this paper we study distributed algorithms on massive graphs where links represent a particular relationship between nodes (for instance, nodes may represent phone numbers and links may indicate telephone calls). Since such graphs are massive they need to be processed in a distributed way. When computing graphtheoretic properties, nodes become natural units for distributed computation. Links do not necessarily represent communication channels between the computing units and therefore do not restrict the communication flow. Our goal is to model and analyze the computational power of such distributed systems where one computing unit is assigned to each node. Communication takes place on a whiteboard where each node is allowed to write at most one message. Every node can read the contents of the whiteboard and, when activated, can write one small message based on its local knowledge. When the protocol terminates its output is computed from the final contents of the whiteboard. We describe four synchronization models for accessing the whiteboard. We show that message size and synchronization power constitute two orthogonal hierarchies for these systems. We exhibit problems that separate these models, i.e., that can be solved in one model but not in a weaker one, even with increased message size. These problems are related to maximal independent set and connectivity. We also exhibit problems that require a given message size independently of the synchronization model. 


Address 
[Becker, Florent; Todinca, Ioan] Univ Orleans, LIFO, Orleans, France, Email: florent.becker@univorleans.fr; 


Corporate Author 

Thesis 



Publisher 
Springer 
Place of Publication 

Editor 



Language 
English 
Summary Language 

Original Title 



Series Editor 

Series Title 

Abbreviated Series Title 



Series Volume 

Series Issue 

Edition 



ISSN 
01782770 
ISBN 

Medium 



Area 

Expedition 

Conference 



Notes 
WOS:000354708400003 
Approved 



Call Number 
UAI @ eduardo.moreno @ 
Serial 
492 

Permanent link to this record 




Author 
Becker, F.; Montealegre, P.; Rapaport, I.; Todinca, I. 


Title 
The Impact Of Locality In The Broadcast Congested Clique Model 
Type 


Year 
2020 
Publication 
Siam Journal On Discrete Mathematics 
Abbreviated Journal 
SIAM Discret. Math. 


Volume 
34 
Issue 
1 
Pages 
682700 


Keywords 
broadcast congested clique; induced cycles; graph degeneracy 


Abstract 
The broadcast congested clique model (BCLIQUE) is a messagepassing model of distributed computation where n nodes communicate with each other in synchronous rounds. First, in this paper we prove that there is a oneround, deterministic algorithm that reconstructs the input graph G if the graph is ddegenerate, and rejects otherwise, using bandwidth b = O(d . log n). Then, we introduce a new parameter to the model. We study the situation where the nodes, initially, instead of knowing their immediate neighbors, know their neighborhood up to a fixed radius r. In this new framework, denoted BCLIQuE[r], we study the problem of detecting, in G, an induced cycle of length at most k (CYCLE <= k) and the problem of detecting an induced cycle of length at least k +1 (CYCLE>k). We give upper and lower bounds. We show that if each node is allowed to see up to distance r = left perpendicular k/2 right perpendicular + 1, then a polylogarithmic bandwidth is sufficient for solving CYCLE>k with only two rounds. Nevertheless, if nodes were allowed to see up to distance r = left perpendicular k/3 right perpendicular, then any oneround algorithm that solves CYCLE>k needs the bandwidth b to be at least Omega(n/ log n). We also show the existence of a oneround, deterministic BCLIQUE algorithm that solves CYCLE <= k with bandwitdh b = O(n(1/left perpendicular k/2 right perpendicular). log n). On the negative side, we prove that, if epsilon <= 1/3 and 0 < r <= k/4, then any epsilonerror, Rround, bbandwidth algorithm in the BCLIQUE[r] model that solves problem CYCLE(<= k )satisfies R . b = Omega(n(1/left perpendicular k/2 right perpendicular)). 


Address 
[Becker, F.; Todinca, I] Univ Orleans, INSA Ctr Val Loire, LIFO EA 4022, Orleans, France, Email: florent.becker@univorleans.fr; 


Corporate Author 

Thesis 



Publisher 
Siam Publications 
Place of Publication 

Editor 



Language 
English 
Summary Language 

Original Title 



Series Editor 

Series Title 

Abbreviated Series Title 



Series Volume 

Series Issue 

Edition 



ISSN 
08954801 
ISBN 

Medium 



Area 

Expedition 

Conference 



Notes 
WOS:000546886700033 
Approved 



Call Number 
UAI @ eduardo.moreno @ 
Serial 
1182 

Permanent link to this record 




Author 
Becker, F.; Montealegre, P.; Rapaport, I.; Todinca, I. 


Title 
The role of randomness in the broadcast congested clique model 
Type 


Year 
2021 
Publication 
Information and Computation 
Abbreviated Journal 
Inf. Comput. 


Volume 
281 
Issue 

Pages 
104669 


Keywords 
Distributed computing; Broadcast congested clique; Message size complexity; Private and public coins; Simultaneous multiparty communication 


Abstract 
We study the role of randomness in the broadcast congested clique model. This is a messagepassing model of distributed computation where the nodes of a network know their local neighborhoods and they broadcast, in synchronous rounds, messages that are visible to every other node.
This works aims to separate three different settings: deterministic protocols, randomized protocols with private coins, and randomized protocols with public coins. We obtain the following results:
If more than one round is allowed, public randomness is as powerful as private randomness.
Oneround publiccoin algorithms can be exponentially more powerful than deterministic algorithms running in several rounds.
Oneround publiccoin algorithms can be exponentially more powerful than oneround privatecoin algorithms.
Oneround privatecoin algorithms can be exponentially more powerful than oneround deterministic algorithms. 


Address 



Corporate Author 

Thesis 



Publisher 

Place of Publication 

Editor 



Language 

Summary Language 

Original Title 



Series Editor 

Series Title 

Abbreviated Series Title 



Series Volume 

Series Issue 

Edition 



ISSN 
08905401 
ISBN 

Medium 



Area 

Expedition 

Conference 



Notes 
WOS:000721215200042 
Approved 



Call Number 
UAI @ alexi.delcanto @ 
Serial 
1491 

Permanent link to this record 