|   | 
Details
   web
Records
Author (up) Ding, C.; Dang, C.; Valdebenito, M.A.; Faes, M.G.R.; Broggi, M.; Beer, M.
Title First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach Type
Year 2023 Publication Mechanical Systems and Signal Processing Abbreviated Journal Mech. Syst. Sig. Process.
Volume 185 Issue Pages 109775
Keywords First-passage probability; Stochastic dynamic system; Extreme value distribution; Fractional moment; Mixture distribution
Abstract First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems is a significant task to be solved in many science and engineering fields, but remains still an open challenge. The present paper develops a novel approach, termed 'fractional moments-based mixture distribution', to address such challenge. This approach is implemented by capturing the extreme value distribution (EVD) of the system response with the concepts of fractional moment and mixture distribution. In our context, the fractional moment itself is by definition a high-dimensional integral with a complicated integrand. To efficiently compute the fractional moments, a parallel adaptive sampling scheme that allows for sample size extension is developed using the refined Latinized stratified sampling (RLSS). In this manner, both variance reduction and parallel computing are possible for evaluating the fractional moments. From the knowledge of low-order fractional moments, the EVD of interest is then expected to be reconstructed. Based on introducing an extended inverse Gaussian distribution and a log extended skew-normal distribution, one flexible mixture distribution model is proposed, where its fractional moments are derived in analytic form. By fitting a set of fractional moments, the EVD can be recovered via the proposed mixture model. Accordingly, the first-passage probabilities under different thresholds can be obtained from the recovered EVD straightforwardly. The performance of the proposed method is verified by three examples consisting of two test examples and one engineering problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-3270 ISBN Medium
Area Expedition Conference
Notes WOS:000876644000004 Approved
Call Number UAI @ alexi.delcanto @ Serial 1669
Permanent link to this record
 

 
Author (up) Valdebenito, M.A.; Wei, P.F.; Song, J.W.; Beer, M.; Broggi, M.
Title Failure probability estimation of a class of series systems by multidomain Line Sampling Type
Year 2021 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 213 Issue Pages 107673
Keywords Line sampling; Multidomain; Linear performance function; Failure probability; Series system
Abstract This contribution proposes an approach for the assessment of the failure probability associated with a particular class of series systems. The type of systems considered involves components whose response is linear with respect to a number of Gaussian random variables. Component failure occurs whenever this response exceeds prescribed deterministic thresholds. We propose multidomain Line Sampling as an extension of the classical Line Sampling to work with a large number of components at once. By taking advantage of the linearity of the performance functions involved, multidomain Line Sampling explores the interactions that occur between failure domains associated with individual components in order to produce an estimate of the failure probability. The performance and effectiveness of multidomain Line Sampling is illustrated by means of two test problems and an application example, indicating that this technique is amenable for treating problems comprising both a large number of random variables and a large number of components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000663910500016 Approved
Call Number UAI @ alexi.delcanto @ Serial 1430
Permanent link to this record