toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Lagos, N.A.; Benitez, S.; Duarte, C.; Lardies, M.A.; Broitman, B.R.; Tapia, C.; Tapia, P.; Widdicombe, S.; Vargas, C.A. pdf  doi
openurl 
  Title Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area Type
  Year 2016 Publication Aquaculture Environment Interactions Abbreviated Journal Aquac. Environ. Interact.  
  Volume 8 Issue Pages 357-370  
  Keywords Calcification; Shell growth; Scallop farming; Upwelling; Chile  
  Abstract Coastal upwelling regions already constitute hot spots of ocean acidification as naturally acidified waters are brought to the surface. This effect could be exacerbated by ocean acidification and warming, both caused by rising concentrations of atmospheric CO2. Along the Chilean coast, upwelling supports highly productive fisheries and aquaculture activities. However, during recent years, there has been a documented decline in the national production of the native scallop Argopecten purpuratus. We assessed the combined effects of temperature and pCO(2)-driven ocean acidification on the growth rates and shell characteristics of this species farmed under the natural influence of upwelling waters occurring in northern Chile (30 degrees S, Tongoy Bay). The experimental scenario representing current conditions (14 degrees C, pH similar to 8.0) were typical of natural values recorded in Tongoy Bay, whilst conditions representing the low pH scenario were typical of an adjacent upwelling area (pH similar to 7.6). Shell thickness, weight, and biomass were reduced under low pH (pH similar to 7.7) and increased temperature (18 degrees C) conditions. At ambient temperature (14 degrees C) and low pH, scallops showed increased shell dissolution and low growth rates. However, elevated temperatures ameliorated the impacts of low pH, as evidenced by growth rates in both pH treatments at the higher temperature treatment that were not significantly different from the control treatment. The impact of low pH at current temperature on scallop growth suggests that the upwelling could increase the time required for scallops to reach marketable size. Mortality of farmed scallops is discussed in relation to our observations of multiple environmental stressors in this upwelling-influenced area.  
  Address [Lagos, Nelson A.; Benitez, Samanta] Univ Santo Tomas, Fac Ciencias, Ctr Invest & Innovac Cambio Climat, Santiago 8370003, Chile, Email: nlagoss@santotomas.cl  
  Corporate Author Thesis  
  Publisher Inter-Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-215x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377605600030 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 630  
Permanent link to this record
 

 
Author (up) Saavedra, L.M.; Saldias, G.S.; Broitman, B.R.; Vargas, C.A. doi  openurl
  Title Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications Type
  Year 2021 Publication Ices Journal Of Marine Science Abbreviated Journal ICES J. Mar. Sci.  
  Volume 78 Issue 1 Pages 323-339  
  Keywords HUMBOLDT CURRENT SYSTEM; OCEAN ACIDIFICATION; PHYSIOLOGICAL ENERGETICS; CONCHOLEPAS-CONCHOLEPAS; TEMPORAL VARIABILITY; SEASONAL VARIABILITY; NORTHERN PATAGONIA; CRASSOSTREA-GIGAS; PACIFIC OYSTER; CHLOROPHYLL-A  
  Abstract The increasing shellfish aquaculture requires knowledge about nearshore environmental variability to manage sustainably and create climate change adaptation strategies. We used data from mooring time series and in situ sampling to characterize oceanographic and carbonate system variability in three bivalve aquaculture areas located along a latitudinal gradient off the Humboldt Current System. Our results showed pH(T) <8 in most coastal sites and occasionally below 7.5 during austral spring-summer in the lower (-30 degrees S) and central (-37 degrees S) latitudes, related to upwelling. Farmed mussels were exposed to undersaturated (Omega(arag) < 1) and hypoxic (<2 ml l(-1)) waters during warm seasons at -37 degrees S, while in the higher latitude (43 degrees S) undersaturated waters were only detected during colder seasons, associated with freshwater runoff. We suggest that both Argopecten purpuratus farmed at -30 degrees S and Mytilus chilensis farmed at -43 degrees S may enhance their growth during summer due to higher temperatures, lower pCO(2), and oversaturated waters. In contrast, Mytilus galloprovincialis farmed at 37 degrees S grows better during spring-summer, following higher temperatures and high pCO(2). This knowledge is relevant for aquaculture, but it must be improved using high-resolution time series and in situ experimentation with farmed species to aid their adaptation to climate change and ocean acidification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1054-3139 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000648942600027 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1414  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: