|   | 
Details
   web
Records
Author (up) Argiz, L.; Reyes, C.; Belmonte, M.; Franchi, O.; Campo, R.; Fra-Vazquez, A.; del Rio, A.V.; Mosquera-Corral, A.; Campos, J.L.
Title Assessment of a fast method to predict the biochemical methane potential based on biodegradable COD obtained by fractionation respirometric tests Type
Year 2020 Publication Journal Of Environmental Management Abbreviated Journal J. Environ. Manage.
Volume 269 Issue Pages 9 pp
Keywords Anaerobic digestion; Biodegradability; BMP; COD fractionation; Respirometric test
Abstract The biochemical methane potential test (BMP) is the most common analytical technique to predict the performance of anaerobic digesters. However, this assay is time-consuming (from 20 to over than 100 days) and consequently impractical when it is necessary to obtain a quick result. Several methods are available for faster BMP prediction but, unfortunately, there is still a lack of a clear alternative. Current aerobic tests underestimate the BMP of substrates since they only detect the easily biodegradable COD. In this context, the potential of COD fractionation respirometric assays, which allow the determination of the particulate slowly biodegradable fraction, was evaluated here as an alternative to early predict the BMP of substrates. Seven different origin waste streams were tested and the anaerobically biodegraded organic matter (CODmet) was compared with the different COD fractions. When considering adapted microorganisms, the appropriate operational conditions and the required biodegradation time, the differences between the CODmet, determined through BMP tests, and the biodegradable COD (CODb) obtained by respirometry, were not significant (CODmet (57.8026 +/- 21.2875) and CODb (55.6491 +/- 21.3417), t (5) = 0.189, p = 0.853). Therefore, results suggest that the BMP of a substrate might be early predicted from its CODb in only few hours. This methodology was validated by the performance of an inter-laboratory studyconsidering four additional substrates.
Address [Argiz, L.; Fra-Vazquez, A.; Val del Rio, A.; Mosquera-Corral, A.] Univ Santiago de Compostela, CRETUS Inst, Santiago De Compostela 15782, Galicia, Spain, Email: luciaargiz.montes@usc.es
Corporate Author Thesis
Publisher Academic Press Ltd- Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes WOS:000541757200008 Approved
Call Number UAI @ eduardo.moreno @ Serial 1185
Permanent link to this record
 

 
Author (up) Carrera, P.; Campo, R.; Mendez, R.; Di Bella, G.; Campos, J.L.; Mosquera-Corral, A.; Val del Rio, A.
Title Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Type
Year 2019 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 226 Issue Pages 865-873
Keywords Aerobic granular sludge; Fish canning wastewater; Nutrients removal; Salinity; AOB
Abstract The development and stability of aerobic granular sludge (AGS) was studied in two Sequencing Batch Reactors (SBRs) treating fish canning wastewater. R1 cycle comprised a fully aerobic reaction phase, while R2 cycle included a plug-flow anaerobic feeding/reaction followed by an aerobic reaction phase. The performance of the AGS reactors was compared treating the same effluents with variable salt concentrations (4.97-13.45 g NaCl/L) and organic loading rates (OLR, 1.80-6.65 kg CODs/(m(3).d)). Granulation process was faster in R2 (day 34) than in R1 (day 90), however the granular biomass formed in the fully aerobic configuration was more stable to the variable feeding composition. Thus, in R1 solid retention times (SRT), up to 15.2 days, longer than in R2, up to 5.8 days, were achieved. These long SRT5 values helped the retention of nitrifying organisms and provoked the increase of the nitrogen removal efficiency to 80% in R1 while it was approximately of 40% in R2. However, the presence of an anaerobic feeding/reaction phase increased the organic matter removal efficiency in R2 (80-90%) which was higher than in R1 with a fully aerobic phase (75-85%). Furthermore, in R2 glycogen-accumulating organisms (GAOs) dominated inside the granules instead of phosphorous-accumulating organisms (PADS), suggesting that GAOs resist better the stressful conditions of a variable and high-saline influent. In terms of AGS properties an anaerobic feeding/reaction phase is not beneficial, however it enables the production of a better quality effluent. (C) 2019 Elsevier Ltd. All rights reserved.
Address [Carrera, P.; Mendez, R.; Mosquera-Corral, A.; Val del Rio, A.] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15782 Santiago De Compostela, Galicia, Spain, Email: paula.carrera@usc.es;
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes WOS:000468709500094 Approved
Call Number UAI @ eduardo.moreno @ Serial 1020
Permanent link to this record