|   | 
Details
   web
Record
Author (up) Saunders, N.; Grunblatt, S.K.; Huber, D.; Collins, K.A.; Jensen, E.L.N.; Vanderburg, A.; Brahm, R.; Jordan, A.; Espinoza, N.; Henning, T.; Hobson, M.J.; Quinn, S.N.; Zhou, G.; Butler, R.P.; Crause, L.; Kuhn, R.B.; Mogotsi, K.M.; Hellier, C.; Angus, R.; Hattori, S.; Chontos, A.; Ricker, G.R.; Jenkins, J.M.; Tenenbaum, P.; Latham, D.W.; Seager, S.; Vanderspek, R.K.; Winn, J.N.; Stockdale, C.; Cloutier, R.
Title TESS Giants Transiting Giants. I.: A Noninflated Hot Jupiter Orbiting a Massive Subgiant Type
Year 2022 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 163 Issue 2 Pages 53
Keywords SATURN; PLANET; EVOLUTION; EFFICIENT
Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M-* = 1.53 +/- 0.12 M-circle dot, R-* = 2.90 +/- 0.14 R-circle dot) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R (p) = 1.017 +/- 0.051 R (J) and mass of M (p) = 0.65 +/- 0.16 M (J) . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000740832800001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1534
Permanent link to this record