|   | 
Details
   web
Records
Author Acuna, V.; Ferreira, C.E.; Freire, A.S.; Moreno, E.
Title Solving the maximum edge biclique packing problem on unbalanced bipartite graphs Type
Year 2014 Publication Discrete Applied Mathematics Abbreviated Journal Discret Appl. Math.
Volume 164 Issue Pages 2-12
Keywords Maximum edge biclique packing; Branch-and-price; Metabolic networks; Product bundling
Abstract A biclique is a complete bipartite graph. Given an (L, R)-bipartite graph G = (V, E) and a positive integer k, the maximum edge biclique packing (num') problem consists in finding a set of at most k bicliques, subgraphs of G, such that the bicliques are vertex disjoint with respect to a subset of vertices S, where S E {V, L, R}, and the number of edges inside the bicliques is maximized. The maximum edge biclique (mEs) problem is a special case of the MEBP problem in which k = 1. Several applications of the MEB problem have been studied and, in this paper, we describe applications of the MEBP problem in metabolic networks and product bundling. In these applications the input graphs are very unbalanced (i.e., IRI is considerably greater than ILI), thus we consider carefully this property in our models. We introduce a new formulation for the MEB problem and a branch-and-price scheme, using the classical branch rule by Ryan and Foster, for the MEBP problem. Finally, we present computational experiments with instances that come from the described applications and also with randomly generated instances. (C) 2011 Elsevier B.V. All rights reserved.
Address [Acuna, V.] Univ Lyon 1, F-69622 Villeurbanne, France, Email: afreire@ime.usp.br
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-218x ISBN Medium
Area Expedition Conference
Notes WOS:000332427400002 Approved
Call Number UAI @ eduardo.moreno @ Serial 361
Permanent link to this record
 

 
Author Freire, A.S.; Moreno, E.; Vielma, J.P.
Title An integer linear programming approach for bilinear integer programming Type
Year 2012 Publication Operations Research Letters Abbreviated Journal Oper. Res. Lett.
Volume 40 Issue 2 Pages 74-77
Keywords Bilinear programming; Integer linear programming; Product bundling
Abstract We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.
Address [Moreno, Eduardo] Univ Adolfo Ibanez, Fac Sci & Engn, Santiago, Chile, Email: afreire@ime.usp.br
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6377 ISBN Medium
Area Expedition Conference
Notes WOS:000301331700002 Approved
Call Number UAI @ eduardo.moreno @ Serial 201
Permanent link to this record
 

 
Author Freire, A.S.; Moreno, E.; Yushimito, W.F.
Title A branch-and-bound algorithm for the maximum capture problem with random utilities Type
Year 2016 Publication European Journal Of Operational Research Abbreviated Journal Eur. J. Oper. Res.
Volume 252 Issue 1 Pages 204-212
Keywords Facility location; Branch and bound; Maximum capture; Random utility model
Abstract The MAXIMUM CAPTURE PROBLEM WITH RANDOM UTILITIES seeks to locate new facilities in a competitive market such that the captured demand of users is maximized, assuming that each individual chooses among all available facilities according to the well-know a random utility model namely the multinomial logit. The problem is complex mostly due to its integer nonlinear objective function. Currently, the most efficient approaches deal with this complexity by either using a nonlinear programing solver or reformulating the problem into a Mixed-Integer Linear Programing (MILP) model. In this paper, we show how the best MILP reformulation available in the literature can be strengthened by using tighter coefficients in some inequalities. We also introduce a new branch-and-bound algorithm based on a greedy approach for solving a relaxation of the original problem. Extensive computational experiments are presented, bench marking the proposed approach with other linear and non-linear relaxations of the problem. The computational experiments show that our proposed algorithm is competitive with all other methods as there is no method which outperforms the others in all instances. We also show a large-scale real instance of the problem, which comes from an application in park-and-ride facility location, where our proposed branch-and-bound algorithm was the most effective method for solving this type of problem. (C) 2015 Elsevier B.V. All rights reserved.
Address [Moreno, Eduardo; Yushimito, Wilfredo F.] Univ Adolfo Ibanez, Fac Sci & Engn, Santiago, Chile, Email: afreire@ime.usp.br;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0377-2217 ISBN Medium
Area Expedition Conference
Notes WOS:000371939700018 Approved
Call Number UAI @ eduardo.moreno @ Serial 601
Permanent link to this record