toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Fustos-Toribio, I.; Manque-Roa, N.; Vasquez Antipan, D.; Hermosilla Sotomayor, M.; Gonzalez, V.L. doi  openurl
  Title Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes Type
  Year 2022 Publication Natural Hazards and Earth System Sciences Abbreviated Journal Nat. Hazards Earth Syst. Sci.  
  Volume 22 Issue 6 Pages (up) 2169-2183  
  Keywords FLOWS-TRIGGERING RAINFALL; BIAS CORRECTION; DEBRIS; IDENTIFICATION; THRESHOLDS; UNCERTAINTY; PRECIPITATION; PERFORMANCE; SIMULATION; IMPACT  
  Abstract Rainfall-induced landslides (RILs) are an issue in the southern Andes nowadays. RILs cause loss of life and damage to critical infrastructure. Rainfall-induced landslide early warning systems (RILEWSs) can reduce and mitigate economic and social damages related to RIL events. The southern Andes do not have an operational-scale RILEWS yet. In this contribution, we present a pre-operational RILEWS based on the Weather and Research Forecast (WRF) model and geomorphological features coupled to logistic models in the southern Andes. The models have been forced using precipitation simulations. We correct the precipitation derived from WRF using 12 weather stations through a bias correction approach. The models were trained using 57 well-characterized RILs and validated by ROC analysis. We show that WRF has strong limitations in representing the spatial variability in the precipitation. Therefore, accurate precipitation needs a bias correction in the study zone. We used accurate precipitation simulation and slope, demonstrating a high predicting capacity (area under the curve, AUC, of 0.80). We conclude that our proposal could be suitable at an operational level under determined conditions. A reliable RIL database and operational weather networks that allow real-time correction of the mesoscale model in the implemented zone are needed. The RILEWSs could become a support to decision-makers during extreme-precipitation events related to climate change in the south of the Andes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1561-8633 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000817098000001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: