toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gazitua, M.C.; Morgante, V.; Poupin, M.J.; Ledger, T.; Rodriguez-Valdecantos, G.; Herrera, C.; Gonzalez-Chavez, M.D.; Ginocchio, R.; Gonzalez, B. doi  openurl
  Title The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings Type
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 11 Issue 1 Pages 10448  
  Keywords BACTERIAL COMMUNITIES; HEAVY-METALS; PHYTOSTABILIZATION; REVEGETATION; RHIZOSPHERE; REMEDIATION; IMPACT; GROWTH; NORTH  
  Abstract Plants must deal with harsh environmental conditions when colonizing abandoned copper mine tailings. We hypothesized that the presence of a native microbial community can improve the colonization of the pioneer plant, Baccharis linearis, in soils from copper mining tailings. Plant growth and microbial community compositions and dynamics were determined in cultivation pots containing material from two abandoned copper mining tailings (Huana and Tambillos) and compared with pots containing fresh tailings or surrounding agricultural soil. Controls without plants or using irradiated microbe-free substrates, were also performed. Results indicated that bacteria (Actinobacteria, Gammaproteobacteria, and Firmicutes groups) and fungi (Glomus genus) are associated with B. linearis and may support plant acclimation, since growth parameters decreased in both irradiated (transiently without microbial community) and fresh tailing substrates (with a significantly different microbial community). Consistently, the composition of the bacterial community from abandoned copper mining tailings was more impacted by plant establishment than by differences in the physicochemical properties of the substrates. Bacteria located at B. linearis rhizoplane were clearly the most distinct bacterial community compared with those of fresh tailings, surrounding soil and non-rhizosphere abandoned tailings substrates. Beta diversity analyses showed that the rhizoplane bacterial community changed mainly through species replacement (turnover) than species loss (nestedness). In contrast, location/geographical conditions were more relevant than interaction with the plants, to explain fungal community differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658433400011 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1425  
Permanent link to this record
 

 
Author (up) Reyes-Bozo, L.; Herrera-Urbina, R.; Saez-Navarrete, C.; Otero, A.F.; Godoy-Faundez, A.; Ginocchio, R. pdf  doi
openurl 
  Title Rougher flotation of copper sulphide ore using biosolids and humic acids Type
  Year 2011 Publication Minerals Engineering Abbreviated Journal Miner. Eng.  
  Volume 24 Issue 14 Pages 1603-1608  
  Keywords Flotation collectors; Flotation froths; Flotation reagents  
  Abstract In the quest of new, less hazardous, and more ambient-friendly froth flotation reagents, the use of biosolids or humic acids as both collector and frother for the concentration of copper sulphide ores was investigated. Rougher flotation tests were conducted in Denver cells on a laboratory scale, and metallurgical indicators such as copper recovery, copper concentrate grade, and concentration and enrichment ratios were compared with those obtained under similar conditions but using conventional collectors and frothers for the industrial flotation of copper sulphide ores. With a dosage of 10% (w/w) biosolids, copper recovery and grade were 26% and 0.81%, respectively. The copper recovery and grade obtained with 1.5% (w/w) salt of humic acids were 29.7% and 3.5%, respectively. A significantly higher copper recovery (65.1%) was obtained with conventional industrial collectors and frothers, but the grade was also low (3.1% Cu). With the same dosage of humic substances, humic acid show that the flotation rate constant was significantly higher (0.2 min(-1)) than that obtained with the same dosage of biosolids (0.09 min(-1)). These results indicate that humic acids have more affinity than biosolids for copper-containing mineral species, and also show that biosolids and humic acids could be used as both collector and frother in the sulphide mineral concentration process by froth flotation. Because the distribution of iron in the concentrate obtained with biosolids is highest, these materials seem to have more affinity for pyrite. (C) 2011 Elsevier Ltd. All rights reserved.  
  Address [Reyes-Bozo, Lorenzo; Saez-Navarrete, Cesar] Pontificia Univ Catolica Chile, Dept Ingn Quim & Bioproc, Santiago, Chile, Email: lcreyes@ing.puc.cl  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297000700010 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 181  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: