toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grieves, N.; Nielsen, LD.; Vines, JI.; Bryant, EM.; Gill, S.; Bouchy, F.; Lendl, M.; Bayliss, D.; Eigmueller, P.; Segransan, D.; Acton, JS.; Anderson, DR.; Burleigh, MR.; Casewell, SL.; Chaushev, A.; Cooke, BF.; Gillen, E.; Goad, MR.; Gunther, MN.; Henderson, BA.; Hogan, A.; Jenkins, JS.; Alves, DR.; Jordan, A.; McCormac, J.; Moyano, M.; Queloz, D.; Raynard, L.; Seidel, JV.; Smith, AMS.; Tilbrook, RH.; Udry, S.; West, RG.; Wheatley, PJ. doi  openurl
  Title NGTS-13b: a hot 4.8 Jupiter-mass planet transiting a subgiant star Type
  Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 647 Issue Pages A180  
  Keywords planets and satellites: detection; planets and satellites: individual: NGTS-13b; techniques: photometric; techniques: radial velocities  
  Abstract We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with logg(*) = 4.04 +/- 0.05, T-eff = 5819 +/- 73 K, M-* = 1.30(-0.18)(+0.11) M-circle dot, and R-* = 1.79 +/- 0.06 R-circle dot. The NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities, we determine NGTS-13b to have a radius of R-P = 1.142 +/- 0.046 R-Jup, a mass of M-P = 4.84 +/- 0.44 M-Jup, and an eccentricity of e = 0.086 +/- 0.034. Previous studies have suggested that similar to 4 M-Jup may be the border separating two formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 M-Jup, making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity of NGTS-13, [Fe/H] = 0.25 +/- 0.17, does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area 0004-6361 Expedition Conference  
  Notes WOS:000636753900003 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1372  
Permanent link to this record
 

 
Author Smith, AMS.; Acton, JS.; Anderson, DR.; Armstrong, DJ.; Bayliss, D.; Belardi, C.; Bouchy, F.; Brahm, R.; Briegal, JT.; Bryant, EM.; Burleigh, MR.; Cabrera, J.; Chaushev, A.; Cooke, BF.; Costes, JC.; Csizmadia, S.; Eigmuller, P.; Erikson, A.; Gill, S.; Gillen, E.; Goad, MR.; Gunther, MN.; Henderson, BA.; Hogan, A.; Jordan, A.; Lendl, M.; McCormac, J.; Moyano, M.; Nielsen, LD.; Rauer, H.; Raynard, L.; Tilbrook, RH.; Turner, O.; Udry, S.; Vines, JI.; Watson, CA.; West, RG.; Wheatley, PJ. doi  openurl
  Title NGTS-14Ab: a Neptune-sized transiting planet in the desert Type
  Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 646 Issue Pages A183  
  Keywords planetary systems; planets and satellites: detection; planets and satellites: individual: NGTS-14Ab; binaries: general  
  Abstract Context. The sub-Jovian, or Neptunian, desert is a previously identified region of parameter space where there is a relative dearth of intermediate-mass planets with short orbital periods.Aims. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14.Methods. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full-frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters.Results. NGTS-14Ab has a radius that is about 30 per cent larger than that of Neptune (0.444 +/- 0.030 R-Jup) and is around 70 per cent more massive than Neptune (0.092 +/- 0.012 M-Jup). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far away enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B, and we investigate the binarity of exoplanet host stars inside and outside the Neptunian desert using Gaia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000624671800002 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: