|   | 
Details
   web
Records
Author Espinoza, N.; Brahm, R.; Henning, T.; Jordan, A.; Dorn, C.; Rojas, F.; Sarkis, P.; Kossakowski, D.; Schlecker, M.; Diaz, M.R.; Jenkins, J.S.; Aguilera-Gomez, C.; Jenkins, J.M.; Twicken, J.D.; Collins, K.A.; Lissauer, J.; Armstrong, D.J.; Adibekyan, V.; Barrado, D.; Barros, S.C.C.; Battley, M.; Bayliss, D.; Bouchy, F.; Bryant, E.M.; Cooke, B.F.; Demangeon, O.D.S.; Dumusque, X.; Figueira, P.; Giles, H.; Lillo-Box, J.; Lovis, C.; Nielsen, L.D.; Pepe, F.; Pollaco, D.; Santos, N.C.; Sousa, S.G.; Udry, S.; Wheatley, P.J.; Turner, O.; Marmier, M.; Segransan, D.; Ricker, G.; Latham, D.; Seager, S.; Winn, J.N.; Kielkopf, J.F.; Hart, R.; Wingham, G.; Jensen, E.L.N.; Helminiak, K.G.; Tokovinin, A.; Briceno, C.; Ziegler, C.; Law, N.M.; Mann, A.W.; Daylan, T.; Doty, J.P.; Guerrero, N.; Boyd, P.; Crossfield, I.; Morris, R.L.; Henze, C.E.; Chacon, A.D.
Title HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS Type
Year 2020 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 491 Issue 2 Pages 2982-2999
Keywords techniques: photometric; techniques: radial velocities; planets and satellites: detection; planets and satellites: fundamental parameters; planets and satellites: individual: TOI-141, TIC 403224672, HD213885
Abstract We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
Address [Espinoza, Nestor] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA, Email: nespinoza@stsci.edu
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000512302100105 Approved
Call Number UAI @ eduardo.moreno @ Serial 1106
Permanent link to this record
 

 
Author Helminiak, K.G.; Moharana, A.; Pawar, T.; Ukita, N.; Sybilski, P.; Espinoza, N.; Kambe, E.; Ratajczak, M.; Jordan, A.; Maehara, H.; Brahm, R.; Kozlowski, S.K.; Konacki, M.
Title Orbital and physical parameters of eclipsing binaries from the ASAS catalogue – XII. A sample of systems with K2 photometry Type
Year 2021 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 508 Issue 4 Pages 5687-5708
Keywords binaries: eclipsing; binaries: spectroscopic; stars: fundamental parameters; stars: individual: HD 284753; EPIC 202073040, RU Cnc, BD+18 2050, FM Leo, HD 149946, BD-19 4582, HD 219869; stars: late-type
Abstract We present results of the analysis of light and radial velocity (RV) curves of eight detached eclipsing binaries observed by the All-Sky Automated Survey, which we have followed up with high-resolution spectroscopy, and were later observed by the Keplersatellite as part of the K2 mission. The RV measurements came from spectra obtained with OAO-188/HIDES, MPG-2.2m/FEROS, SMARTS 1.5m/CHIRON, Euler/CORALIE, ESO-3.6m/HARPS, and OHP-1.93/ELODIE instruments. The K2 time-series photometry was analysed with the JKTEBOP code, with out-of-eclipse modulations of different origin taken into account. Individual component spectra were retrieved with the fd3 code, and analysed with the code ISPEC in order to determine effective temperatures and metallicities. Absolute values of masses, radii, and other stellar parameters are calculated, as well as ages, found through isochrone fitting. For five systems, such analysis has been done for the first time. The presented sample consists of a variety of stars, from low-mass dwarfs, through G- and F-type main sequence objects, to evolved active sub-giants, one of which is found to be crossing the Hertzsprung gap. One target may contain a gamma Dor-type pulsator, two more are parts of higher-order multiples, and spectra of their tertiaries were also retrieved and used to constrain the properties of these systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000715897400062 Approved
Call Number UAI @ alexi.delcanto @ Serial 1498
Permanent link to this record