|   | 
Details
   web
Records
Author Armaza, C.; Hojman, S.A.; Koch, B.; Zalaquett, N.
Title On the possibility of non-geodesic motion of massless spinning tops Type
Year 2016 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 33 Issue 14 Pages 18 pp
Keywords trajectory; massless; spin; curved spacetime
Abstract The motion of spinning massless particles in gravitationally curved backgrounds is revisited by considering new types of constraints. Those constraints guarantee zero mass (P μP μ= 0) and they allow for the possibility of trajectories which are not simply null geodesics. To exemplify this previously unknown possibility, the equations of motion are solved for radial motion in Schwarzschild background. It is found that the particle experiences a spin-induced energy shift, which is proportional to the Hawking temperature of the black hole background.
Address [Armaza, Cristobal; Koch, Benjamin; Zalaquett, Nicolas] Pontificia Univ Catolica Chile, Inst Fis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile, Email: nzalaquett@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000378895900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 636
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Birefringent light propagation on anisotropic cosmological backgrounds Type
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 12 pp
Keywords
Abstract Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)-while, for earlier times, it matches a Kasner Universe-is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the “horizon” problem.
Address [Asenjo, Felipe A.; Hojman, Sergio A.] Univ Adolfo Ibanez, UAI Phys Ctr, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000407716200007 Approved
Call Number UAI @ eduardo.moreno @ Serial 756
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields Type
Year 2017 Publication Foundations Of Physics Abbreviated Journal Found. Phys.
Volume 47 Issue 7 Pages 887-896
Keywords Quintessence; Exact solution; Unification of geometry and dark matter
Abstract A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-9018 ISBN Medium
Area Expedition Conference
Notes WOS:000404224500003 Approved
Call Number UAI @ eduardo.moreno @ Serial 741
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Do electromagnetic waves always propagate along null geodesics? Type
Year 2017 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 20 Pages 12 pp
Keywords electromagnetic waves; curved spacetime; non-null geodesics
Abstract We find exact solutions to Maxwell equations written in terms of fourvector potentials in non-rotating, as well as in Gdel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled secondorder differential equations for combinations of the components of the four-vector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non-rotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gdel and Kerr spacetimes do not exhibit that behavior.
Address [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000411741800008 Approved
Call Number UAI @ eduardo.moreno @ Serial 800
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title New non-linear modified massless Klein-Gordon equation Type
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 5 pp
Keywords
Abstract The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop “tails” inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved space-times. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential.
Address [Asenjo, Felipe A.; Hojman, Sergio A.] Univ Adolfo Ibanez, UAI Phys Ctr, Santiago, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000414439100003 Approved
Call Number UAI @ eduardo.moreno @ Serial 791
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Correspondence between dark energy quantum cosmology and Maxwell equations Type
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 9 Pages 5 pp
Keywords
Abstract A Friedmann-Robertson-Walker cosmology with dark energy can be modelled using a quintessence field. That system is equivalent to a relativistic particle moving on a two-dimensional conformal spacetime. When the quintessence behaves as a free massless scalar field in a Universe with cosmological constant, the quantized version of that theory can lead to a supersymmetric Majorana quantum cosmology. The purpose of this work is to show that such quantum cosmological model corresponds to the Maxwell equations for electromagnetic waves propagating in a medium with specific values for its relative permittivity and relative permeability. The form of those media parameters are calculated, implying that a Majorana quantum cosmology can be studied in an analogue electromagnetic system.
Address [Asenjoa, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: felipe.asenjo@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000484523100004 Approved
Call Number UAI @ eduardo.moreno @ Serial 1053
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Casimir force induced by electromagnetic wave polarization in Kerr, Godel and Bianchi-I spacetimes Type
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 11 Pages 7 pp
Keywords
Abstract Electromagnetic waves propagation on either rotating or anisotropic spacetime backgrounds (such as Kerr and Gödel metrics, or Bianchi�I metric) produce a reduction of the magnitude of Casimir forces between plates. These

curved spacetimes behave as chiral or birefringent materials producing dispersion of electromagnetic waves, in such a way that right� and left�circularly polarized light waves propagate with different phase velocities. Results are explicitly calculated for discussed cases. The difference on the wavevectors of the two polarized electromagnetic waves produces an abatement of a Casimir force which depends on the interaction between the polarization of electromagnetic

waves and the properties of the spacetime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1268
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.
Title Accelerating solutions to diffusion equation Type
Year 2021 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus.
Volume 136 Issue 6 Pages 677
Keywords NONLINEAR DIFFUSIONSIMILARITY SOLUTIONS
Abstract We report accelerating diffusive solutions to the diffusion equation with a constant diffusion tensor. The maximum values of the diffusion density evolve in an accelerating fashion described by Airy functions. We show the diffusive accelerating behavior for one-dimensional systems, as well as for a general three-dimensional case. We also construct a modulated modified form of the diffusion solution that retains the accelerating features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000664659600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1433
Permanent link to this record
 

 
Author Asenjo, F.A.; Erices, C.; Gomberoff, A.; Hojman, S.A.; Montecinos, A.
Title Differential geometry approach to asymmetric transmission of light Type
Year 2017 Publication Optics Express Abbreviated Journal Opt. Express
Volume 25 Issue 22 Pages 26405-26416
Keywords
Abstract In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as “transformation optics.” This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material -or more precisely, its constitutive tensor-will not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the “W-tensor.” In the geometric optics approximation we show how the properties of the W-tensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization). (C) 2017 Optical Society of America
Address [Asenjo, Felipe A.; Gomberoff, Andres] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Torres 2640, Santiago, Chile, Email: andres.gomberoff@uai.cl
Corporate Author Thesis
Publisher Optical Soc Amer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes WOS:000413995000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 798
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Propagation of light in linear and quadratic GRIN media: The Bohm potential Type
Year 2021 Publication Optics Communications Abbreviated Journal Opt. Commun.
Volume 490 Issue Pages 126947
Keywords
Abstract It is shown that field propagation in linear and quadratic gradient-index (GRIN) media obeys the same rules of free propagation in the sense that a field propagating in free space has a (mathematical) form that may be exported to those particular GRIN media. The Bohm potential is introduced in order to explain the reason of such behavior: it changes the dynamics by modifying the original potential . The concrete cases of two different initials conditions for each potential are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4018 ISBN Medium
Area Expedition Conference
Notes WOS:000664742700011 Approved
Call Number UAI @ alexi.delcanto @ Serial 1424
Permanent link to this record
 

 
Author Contreras, M.; Hojman, S.A.
Title Option pricing, stochastic volatility, singular dynamics and constrained path integrals Type
Year 2014 Publication Physica A-Statistical Mechanics And Its Applications Abbreviated Journal Physica A
Volume 393 Issue Pages 391-403
Keywords Option pricing; Stochastic volatility; Quantum mechanics; Singular Lagrangian systems; Dirac's method; Constrained Hamiltonian path integrals
Abstract Stochastic volatility models have been widely studied and used in the financial world. The Heston model (Heston, 1993) [7] is one of the best known models to deal with this issue. These stochastic volatility models are characterized by the fact that they explicitly depend on a correlation parameter p which relates the two Brownian motions that drive the stochastic dynamics associated to the volatility and the underlying asset. Solutions to the Heston model in the context of option pricing, using a path integral approach, are found in Lemmens et al. (2008) [21] while in Baaquie (2007,1997) [12,13] propagators for different stochastic volatility models are constructed. In all previous cases, the propagator is not defined for extreme cases rho = +/- 1. It is therefore necessary to obtain a solution for these extreme cases and also to understand the origin of the divergence of the propagator. In this paper we study in detail a general class of stochastic volatility models for extreme values rho = +/- 1 and show that in these two cases, the associated classical dynamics corresponds to a system with second class constraints, which must be dealt with using Dirac's method for constrained systems (Dirac, 1958,1967) [22,23] in order to properly obtain the propagator in the form of a Euclidean Hamiltonian path integral (Henneaux and Teitelboim, 1992) [25]. After integrating over momenta, one gets an Euclidean Lagrangian path integral without constraints, which in the case of the Heston model corresponds to a path integral of a repulsive radial harmonic oscillator. In all the cases studied, the price of the underlying asset is completely determined by one of the second class constraints in terms of volatility and plays no active role in the path integral. (C) 2013 Elsevier B.V. All rights reserved.
Address [Contreras, Mauricio] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: mauricio.contreras@uai.cl
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4371 ISBN Medium
Area Expedition Conference
Notes WOS:000328179200034 Approved
Call Number UAI @ eduardo.moreno @ Serial 335
Permanent link to this record
 

 
Author Hojman, S.A.
Title Origin of conical dispersion relations Type
Year 2014 Publication Revista Mexicana De Fisica Abbreviated Journal Rev. Mex. Fis.
Volume 60 Issue 5 Pages 336-339
Keywords Quantum mechanics; modified Dirac-Kronig-Penney potential; conical dispersion relations
Abstract A mechanism that produces conical dispersion relations is presented. A Kronig Penney one dimensional array with two different strengths delta function potentials gives rise to both the gap closure and the dispersion relation observed in graphene and other materials. The Schrodinger eigenvalue problem is locally invariant under, the infinite dimensional Virasoro algebra near conical dispersion points in reciprocal space, thus suggesting a possible relation to string theory.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Fac Ingn & Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl
Corporate Author Thesis
Publisher Soc Mexicana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-001x ISBN Medium
Area Expedition Conference
Notes WOS:000341802200001 Approved
Call Number UAI @ eduardo.moreno @ Serial 409
Permanent link to this record
 

 
Author Hojman, S.A.
Title Construction of Lagrangian and Hamiltonian structures starting from one constant of motion Type
Year 2015 Publication Acta Mechanica Abbreviated Journal Acta Mech.
Volume 226 Issue 3 Pages 735-744
Keywords
Abstract The problem of the construction of Lagrangian and Hamiltonian structures starting from two first-order equations of motion is presented. This approach requires the knowledge of one (time independent) constant of motion for the dynamical system only. The Hamiltonian and Lagrangian structures are constructed, the Hamilton-Jacobi equation is then written and solved, and the second (time dependent) constant of the motion for the problem is explicitly exhibited.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Fac Artes Liberales, Dept Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-5970 ISBN Medium
Area Expedition Conference
Notes WOS:000350394400009 Approved
Call Number UAI @ eduardo.moreno @ Serial 463
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Can gravitation accelerate neutrinos? Type
Year 2013 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 30 Issue 2 Pages 10 pp
Keywords
Abstract The Lagrangian equations of motion for massive spinning test particles (tops) moving on a gravitational background using general relativity are presented. The paths followed by tops are nongeodesic. An exact solution for the motion of tops on a Schwarzschild background which allows for superluminal propagation of tops is studied. It is shown that the solution becomes relevant for particles with small masses, such as neutrinos. This general result is used to calculate the necessary condition to produce superluminal motion in part of the trajectory of a small mass particle in a weak gravitational field. The condition for superluminal motion establishes a relation between the mass, energy and total angular momentum of the particle.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Fac Ingn & Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000313097300008 Approved
Call Number UAI @ eduardo.moreno @ Serial 257
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Supersymmetric Majorana quantum cosmologies Type
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 8 Pages 7 pp
Keywords
Abstract The Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker universe in the presence of a quintessence scalar field are shown to be described in a compact way, formally identical to the dynamics of a relativistic particle moving on a two-dimensional spacetime. The correct Lagrangian for the system is presented and used to construct a spinor quantum cosmology theory using Breit's prescription. The theory is supersymmetric when written in the Majorana representation. The spinor field components interact through a potential that correlates the spacetime metric and the quintessence. An exact supersymmetric solution for k = 0 case is exhibited. This quantum cosmology model may be interpreted as a theory of interacting universes.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000362901900005 Approved
Call Number UAI @ eduardo.moreno @ Serial 544
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Comment on “Highly relativistic spin-gravity coupling for fermions” Type
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 2 Pages 4 pp
Keywords
Abstract We exhibit difficulties of different sorts which appear when using the Mathisson-Papapetrou equations, in particular in the description of highly relativistic particles presented in R. Plyatsko and M. Fenyk [Phys. Rev. D 91, 064033 (2015)]. We compare some results of this theory and of the aforementioned work with the ones obtained using a Lagrangian formulation for massive spinning particles and show that the issues mentioned in the preceding sentence do not appear in the Lagrangian treatment.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago 7941169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000369327900012 Approved
Call Number UAI @ eduardo.moreno @ Serial 640
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Spinning particles coupled to gravity and the validity of the universality of free fall Type
Year 2017 Publication Classical And Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 11 Pages 8 pp
Keywords spin-gravity coupling; spinning massive particle; Lagrangian description
Abstract Recent experimental work has determined that free falling Rb-87 atoms on Earth, with vertically aligned spins, follow geodesics, thus apparently ruling out spin-gravitation interactions. It is showed that while some spinning matter models coupled to gravitation referenced to in that work seem to be ruled out by the experiment, those same experimental results confirm theoretical results derived from a Lagrangian description of spinning particles coupled to gravity constructed over forty years ago. A proposal to carry out (similar but) different experiments which will help to test the validity of the universality of free fall as opposed to the correctness of the aforementioned Lagrangian theory, is presented.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000402399700011 Approved
Call Number UAI @ eduardo.moreno @ Serial 735
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Non-geodesic circular motion of massive spinning test bodies around a Schwarzschild field in the Lagrangian theory Type
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 10 Pages 7 pp
Keywords
Abstract Recent interest on studying possible violations of the Equivalence Principle has led to the development of space satellite missions testing it for bodies moving on circular orbits around Earth. This experiment establishes that the validity of the equivalence principle is independent of the composition of bodies. However, the internal degrees of freedom of the bodies (such as spin) were not taken into account. In this work, it is shown exactly that the circular orbit motion of test bodies does present a departure from geodesic motion when spin effects are not negligible. Using a Lagrangian theory for spinning massive bodies, an exact solution for their circular motion is found showing that the non-geodesic behavior manifests through different tangential velocities of the test bodies, depending on the orientation of its spin with respect to the total angular momentum of the satellite. Besides, for circular orbits, spinning test bodies present no tangential acceleration. We estimate the difference of the two possible tangential velocities for the case of circular motion of spinning test bodies orbiting Earth.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000447801100002 Approved
Call Number UAI @ eduardo.moreno @ Serial 921
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 36 Pages 7 pp
Keywords Schrodinger equation; New exact solutions; Accelerating wavepackets; Bohm potential
Abstract A new approach to find exact solutions to one-dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non-vanishing Bohm potentials. For most of the potentials, no solutions to the Schrodinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non-vanishing Bohm potentials. New examples of this kind are found and discussed. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1271
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Classical and Quantum Dispersion Relations Type
Year 2020 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 95 Issue 8 Pages 7 pp
Keywords Quantum Hamilton-Jacobi equation; Bohm potential; dispersion relation
Abstract It is showed that, in general, classical and quantum dispersion relations are different due to the presence of the Bohm potential. There are exact particular solutions of the quantum (wave) theory which obey the classical dispersion relation, but they differ in the general case. The dispersion relations may also coincide when additional assumptions are made, such as WKB or eikonal approximations, for instance. This general result also holds for non-quantum wave equations derived from classical counterparts, such as in ray and wave optics, for instance. Explicit examples are given for covariant scalar, vectorial and tensorial fields in flat and curved spacetimes.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Santiago 7491169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000543208700001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1184
Permanent link to this record