toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Tariq, A.; Undurraga, EA.; Laborde, CC.; Vogt-Geisse, K.; Luo, RY.; Rothenberg, R.; Chowell, G. doi  openurl
  Title Transmission dynamics and control of COVID-19 in Chile, March-October, 2020 Type
  Year 2021 Publication Plos Neglected Tropical Diseases Abbreviated Journal PLOS Negl. Trop. Dis.  
  Volume 15 Issue 1 Pages e0009070  
  Keywords EPIDEMIC; CHARACTERIZE; GROWTH  
  Abstract ince the detection of the first case of COVID-19 in Chile on March 3(rd), 2020, a total of 513,188 cases, including similar to 14,302 deaths have been reported in Chile as of November 2(nd), 2020. Here, we estimate the reproduction number throughout the epidemic in Chile and study the effectiveness of control interventions especially the effectiveness of lockdowns by conducting short-term forecasts based on the early transmission dynamics of COVID-19. Chile's incidence curve displays early sub-exponential growth dynamics with the deceleration of growth parameter, p, estimated at 0.8 (95% CI: 0.7, 0.8) and the reproduction number, R, estimated at 1.8 (95% CI: 1.6, 1.9). Our findings indicate that the control measures at the start of the epidemic significantly slowed down the spread of the virus. However, the relaxation of restrictions and spread of the virus in low-income neighborhoods in May led to a new surge of infections, followed by the reimposition of lockdowns in Greater Santiago and other municipalities. These measures have decelerated the virus spread with R estimated at similar to 0.96 (95% CI: 0.95, 0.98) as of November 2(nd), 2020. The early sub-exponential growth trend (p similar to 0.8) of the COVID-19 epidemic transformed into a linear growth trend (p similar to 0.5) as of July 7(th), 2020, after the reimposition of lockdowns. While the broad scale social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing and active case detection and isolation efforts to maintain the epidemic under control.

Author summary

In context of the ongoing COVID-19 pandemic, Chile has been one of the hardest-hit countries in Latin America, struggling to contain the spread of the virus. In this manuscript, we employ renewal equation to estimate the reproduction number (R) for the early ascending phase of the COVID-19 epidemic and by July 7(th), 2020 to guide the magnitude and intensity of interventions required to combat the COVID-19 epidemic. We also estimate the instantaneous reproduction number throughout the epidemic in Chile. Moreover, we generate short-term forecasts based on the epidemic trajectory using phenomenological models, and assess counterfactual scenarios to understand any additional resources required to contain the virus' spread. Our results indicate early sustained transmission of SARS-CoV-2. However, the initial control measures at the start of the epidemic significantly slowed down the spread of the virus. The easing of COVID-19 restrictions in April led to a new wave of infections, followed by the re-imposition of lockdowns in Greater Santiago and several municipalities. Most recent estimates of reproduction number indicate a decline in the virus transmission. While broad-scale social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing efforts.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1935-2735 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612932700004 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1345  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: