|   | 
Author Dewitte, B.; Concha, E.; Saavedra, D.; Pizarro, O.; Martinez-Villalobos, C.; Gushchina, D.; Ramos, M.; Montecinos, A.
Title The ENSO-induced South Pacific Meridional Mode Type
Year 2023 Publication (up) Frontiers in Climate Abbreviated Journal Front. Clim.
Volume 4 Issue Pages 18 pp
Keywords ENSO; South Pacific Meridional Model; oceanic teleconnection; CMIP; ENSO SO complexity
Abstract Previous studies have investigated the role of the Pacific meridional mode (PMM), a climate mode of the mid-latitudes in the Northern and Southern Hemisphere, in favoring the development of the El Niño Southern Oscillation (ENSO). However little is known on how ENSO can influence the development of the PMM. Here we investigate the relationship between ENSO and the South Pacific Meridional Mode (SPMM) focusing on strong SPMM events that follows strong El Niño events. This type of events represents more than 60% of such events in the observational record and the historical simulations of the CESM Large ensemble (CESM-LE). It is first shown that such a relationship is rather stationary in both observations and the CESM-LE. Our analyses further reveal that strong SPMM events are associated with a coastal warming o northern central Chile peaking in Austral winter resulting from the propagation of waves forced at the equator during the development of El Niño events. The time delay between the ENSO peak (Boreal winter) and this coastal warming (Austral winter) can be understood in terms of the diferential contribution of the equatorially-forced propagating baroclinic waves to the warming along

the coast. In particular, the diference in phase speeds of the waves (the

high-order mode the wave the slower) implies that they do not overlap along their propagation south of 20◦S. This contributes to the persistence of warm coastal SST anomalies o Central Chile until the Austral summer following the concurrent El Niño event. This coastal warming is favorable to the development of strong SPMM events as the South Pacific Oscillation become active during that season. The analysis of the simulations of the Coupled Intercomparison Project phases 5 and 6 (CMIP5/6) indicates that very few models realistically simulate this ENSO/SPMM relationship and associated oceanic teleconnection.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2624-9553 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1719
Permanent link to this record

Author Asenjo, F.A.; Erices, C.; Gomberoff, A.; Hojman, S.A.; Montecinos, A.
Title Differential geometry approach to asymmetric transmission of light Type
Year 2017 Publication (up) Optics Express Abbreviated Journal Opt. Express
Volume 25 Issue 22 Pages 26405-26416
Abstract In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as “transformation optics.” This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material -or more precisely, its constitutive tensor-will not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the “W-tensor.” In the geometric optics approximation we show how the properties of the W-tensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization). (C) 2017 Optical Society of America
Address [Asenjo, Felipe A.; Gomberoff, Andres] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Torres 2640, Santiago, Chile, Email: andres.gomberoff@uai.cl
Corporate Author Thesis
Publisher Optical Soc Amer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes WOS:000413995000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 798
Permanent link to this record