|   | 
Details
   web
Records
Author (up) Garcia-Papani, F.; Uribe-Opazo, M.A.; Leiva, V.; Aykroyd, R.G.
Title Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data Type
Year 2017 Publication Stochastic Environmental Research And Risk Assessment Abbreviated Journal Stoch. Environ. Res. Risk Assess.
Volume 31 Issue 1 Pages 105-124
Keywords Asymmetric distributions; Local influence; Matern model; Maximum likelihood methods; Monte Carlo simulation; Non-normality; R software; Spatial data analysis
Abstract Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum-Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered-which is extremely important for agricultural management.
Address [Garcia-Papani, Fabiana; Uribe-Opazo, Miguel Angel] Univ Estadual Oeste Parana, Postgrad Program Agr Engn, Ctr Exact Sci & Technol, Cascavel, PR, Brazil, Email: fgarciapapani@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3240 ISBN Medium
Area Expedition Conference
Notes WOS:000394278600008 Approved
Call Number UAI @ eduardo.moreno @ Serial 704
Permanent link to this record
 

 
Author (up) Urrestarazu, P.; Villavicencio, G.; Opazo, M.; Arbildua, J.; Boreiko, C.; Delbeke, K.; Rodriguez, P.H.
Title Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects Type
Year 2014 Publication Environmental Health Abbreviated Journal Environ. Health
Volume 13 Issue Pages 9 pp
Keywords Lead; Mouthing; Migration test; Alloys; Chronic exposure; Saliva
Abstract Background: Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. Methods: The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of children to metals such as lead while mouthing metallic objects. The surrogate saliva medium was composed of: 150 mM NaCl, 0.16% porcine Mucin and 5 mM buffer MOPS, adjusted to pH 7.2. Alloys samples, in the form of polished metallic disc of known surface area, were subjected to an eight hours test. Results: Two whitemetal alloys Sn/Pb/Sb/Cu and three brass alloys Cu/Zn/Pb were tested using the saliva migration protocol. In the case of the whitemetal alloys, first order release kinetics resulting in the release of 0.03 and 0.51 μg lead/cm(2) after 8 hours of tests were observed, for lead contents of 0.05-0.07% and 5.5%, respectively. Brasses exhibited linear incremental release rates of 0.043, 0.175 and 0.243 μg lead/cm(2)h for lead contents of 0.1-0.2%, 1.7-2.2% and 3.1-3.5%, respectively. The linear regression analysis of lead release rates relative to Pb content in brasses yielded a slope of 0.08 μg lead/cm(2)h% Pb (r(2) = 0.92). Lead release rates were used to estimate the mean daily mouthing exposure of a child to lead, according to age-specific estimates of mouthing time behavior. Calculated daily intakes were used as oral inputs for the IEUBK toxicokinetic model, predicting only marginal changes in blood lead levels (0.2 μg lead/dL or less) for children aged 0.5 to 1 years old exposed to either class of alloy. Conclusions: The results of this study as a whole support the use of migration data of metal ions, rather than total metal content, to estimate health risk from exposure to metals and metal alloys substances in children.
Address [Urrestarazu, Paola; Villavicencio, German; Opazo, Margaret; Arbildua, Jose; Rodriguez, Patricio H.] Univ Adolfo Ibanez, Ctr Ecotoxicol & Chem Met, Santiago 2700, Chile, Email: patricio.rodriguez@uai.cl
Corporate Author Thesis
Publisher Biomed Central Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-069x ISBN Medium
Area Expedition Conference
Notes WOS:000340967800001 Approved
Call Number UAI @ eduardo.moreno @ Serial 402
Permanent link to this record