|   | 
Details
   web
Records
Author (up) Dorval, P.; Talens, G.J.J.; Otten, G.P.P.L.; Brahm, R.; Jordan, A.; Torres, P.; Vanzi, L.; Zapata, A.; Henry, T.; Paredes, L.; Jao, W.C.; James, H.; Hinojosa, R.; Bakos, G.A.; Csubry, Z.; Bhatti, W.; Suc, V.; Osip, D.; Mamajek, E.E.; Mellon, S.N.; Wyttenbach, A.; Stuik, R.; Kenworthy, M.; Bailey, J.; Ireland, M.; Crawford, S.; Lomberg, B.; Kuhn, R.; Snellen, I.
Title MASCARA-4 b/bRing-1 b: A retrograde hot Jupiter around a bright A-type star Type
Year 2020 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 635 Issue Pages 10 pp
Keywords planetary systems; stars: individual: HD 85628; stars: individual: MASCARA-4b; stars: individual: bRing-1b
Abstract Context. The Multi-site All-Sky CAmeRA (MASCARA) and bRing are both photometric ground-based instruments with multiple stations that rely on interline charge-coupled devices with wide-field lenses to monitor bright stars in the local sky for variability. MASCARA has already discovered several planets in the northern sky, which are among the brightest known transiting hot Jupiter systems. Aims. In this paper, we aim to characterize a transiting planetary candidate in the southern skies found in the combined MASCARA and bRing data sets of HD 85628, an A7V star of V = 8.2 mag at a distance 172 pc, to establish its planetary nature. Methods. The candidate was originally detected in data obtained jointly with the MASCARA and bRing instruments using a Box Least-Square search for transit events. Further photometry was taken by the 0.7 m Chilean-Hungarian Automated Telescope (CHAT), and radial velocity measurements with the Fiber Dual Echelle Optical Spectrograph on the European Southern Observatory 1.0 m Telescope. High-resolution spectra during a transit were taken with the CTIO high-resolution spectrometer (CHIRON) on the Small and Moderate Aperture Research Telescope System 1.5 m telescope to target the Doppler shadow of the candidate. Results. We confirm the existence of a hot Jupiter transiting the bright A7V star HD 85628, which we co-designate as MASCARA-4b and bRing-1b. It is in an orbit of 2.824 days, with an estimated planet radius of 1.53(-0.04)(+0.07) R-Jup and an estimated planet mass of 3.1 +/- 0.9 M-Jup, putting it well within the planetary regime. The CHAT observations show a partial transit, reducing the probability that the transit was around a faint background star. The CHIRON observations show a clear Doppler shadow, implying that the transiting object is in a retrograde orbit with |lambda| = 244.9(-3.6)(+2.7)degrees. The planet orbits at a distance of 0.047 +/- 0.004 AU from the star and has a zero-albedo equilibrium temperature of 2100 +/- 100 K. In addition, we find that HD 85628 has a previously unreported stellar companion star in the Gaia DR2 data demonstrating common proper motion and parallax at 4.3 '' separation (projected separation similar to 740 AU), and with absolute magnitude consistent with being a K/M dwarf. Conclusions. MASCARA-4 b/bRing-1 b is the brightest transiting hot Jupiter known to date in a retrograde orbit. It further confirms that planets in near-polar and retrograde orbits are more common around early-type stars. Due to its high apparent brightness and short orbital period, the system is particularly well suited for further atmospheric characterization.
Address [Dorval, P.; Wyttenbach, A.; Stuik, R.; Kenworthy, M.; Snellen, I] Leiden Univ, Leiden Observ, Postbus 9513, NL-2300 RA Leiden, Netherlands, Email: dorval@strw.leidenuniv.nl
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-0746 ISBN Medium
Area Expedition Conference
Notes WOS:000520102800002 Approved
Call Number UAI @ eduardo.moreno @ Serial 1131
Permanent link to this record
 

 
Author (up) Kossakowski, D.; Espinoza, N.; Brahm, R.; Jordan, A.; Henning, T.; Rojas, F.; Kurster, M.; Sarkis, P.; Schlecker, M.; Pozuelos, F.J.; Barkaoui, K.; Jehin, E.; Gillon, M.; Matthews, E.; Horch, E.P.; Ciardi, D.R.; Crossfield, I.J.M.; Gonzales, E.; Howell, S.B.; Matson, R.; Schlieder, J.; Jenkins, J.; Ricker, G.; Seager, S.; Winn, J.N.; Li, J.; Rose, M.E.; Smith, J.C.; Dynes, S.; Morgan, E.; Villasenor, J.N.; Charbonneau, D.; Jaffe, T.; Yu, L.; Bakos, G.; Bhatti, W.; Bouchy, F.; Collins, K.A.; Collins, K.I.; Csubry, Z.; Evans, P.; Jensen, E.L.N.; Lovis, C.; Marmier, M.; Nielsen, L.D.; Osip, D.; Pepe, F.; Relles, H.M.; Segransan, D.; Shporer, A.; Stockdale, C.; Suc, V.; Turner, O.; Udry, S.
Title TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ Type
Year 2019 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 490 Issue 1 Pages 1094-1110
Keywords techniques: photometric; planets and satellites: detection; stars: individual: HD271181; stars: individual: TIC 179317684; stars: individual: TIC 271893367; stars: individual: TYC9191-519-1
Abstract We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254 +/- 0.016 R-J, massive (2.61(-0.12)(+0.19) M-J) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (R-P = 1.478(-0.029)(+0.022) R-J, M-P = 1.219 +/- 0.11 M-J) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (e = 0.262(-0.037)(+0.045)), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).
Address [Kossakowski, Diana; Espinoza, Nestor; Henning, Thomas; Kuerster, Martin; Sarkis, Paula; Schlecker, Martin] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany, Email: kossakowski@mpia.dc
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000496922300078 Approved
Call Number UAI @ eduardo.moreno @ Serial 1076
Permanent link to this record
 

 
Author (up) McGruder, C.D.; Lopez-Morales, M.; Espinoza, N.; Rackham, B.V.; Apai, D.; Jordan, A.; Osip, D.J.; Alam, M.K.; Bixel, A.; Fortney, J.J.; Henry, G.W.; Kirk, J.; Lewis, N.K.; Rodler, F.; Weaver, I.C.
Title ACCESS: Confirmation of No Potassium in the Atmosphere of WASP-31b Type
Year 2020 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 160 Issue 5 Pages 22 pp
Keywords
Abstract We present a new optical (400-950 nm) transmission spectrum of the hot Jupiter WASP-31b (M = 0.48 M-J; R = 1.54 R-J; P = 3.41 days), obtained by combining four transit observations. These transits were observed with IMACS on the Magellan Baade Telescope at Las Campanas Observatory as part of the ACCESS project. We investigate the presence of clouds/hazes in the upper atmosphere of this planet, as well as the contribution of stellar activity on the observed features. In addition, we search for absorption features of the alkali elements Na i and K i, with particular focus on K i, for which there have been two previously published disagreeing results. Observations with Hubble Space Telescope (HST)/STIS detected K i, whereas ground-based low- and high-resolution observations did not. We use equilibrium and nonequilibrium chemistry retrievals to explore the planetary and stellar parameter space of the system with our optical data combined with existing near-IR observations. Our best-fit model is that with a scattering slope consistent with a Rayleigh slope (alpha = 5(-3.1)(+2.9)), high-altitude clouds at a log cloud top pressure of -3.6(-2.1)(+2.7) bars, and possible muted H2O features. We find that our observations support other ground-based claims of no K I. Clouds are likely why signals like H2O are extremely muted and Na or K cannot be detected. We then juxtapose our Magellan/IMACS transmission spectrum with existing VLT/FORS2, HST/WFC3, HST/STIS, and Spitzer observations to further constrain the optical-to-infrared atmospheric features of the planet. We find that a steeper scattering slope (alpha = 8.3 +/- 1.5) is anchored by STIS wavelengths blueward of 400 nm and only the original STIS observations show significant potassium signal.
Address [McGruder, Chima D.; Lopez-Morales, Mercedes; Alam, Munazza K.; Kirk, James; Weaver, Ian C.] Harvard & Smithsonian, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA, Email: chima.mcgruder@cfa.harvard.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000584919200001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1262
Permanent link to this record
 

 
Author (up) Nielsen, L.D.; Brahm, R.; Bouchy, F.; Espinoza, N.; Turner, O.; Rappaport, S.; Pearce, L.; Ricker, G.; Vanderspek, R.; Latham, D.W.; Seager, S.; Winn, J.N.; Jenkins, J.M.; Acton, J.S.; Bakos, G.; Barclay, T.; Barkaoui, K.; Bhatti, W.; Briceno, C.; Bryant, E.M.; Burleigh, M.R.; Ciardi, D.R.; Collins, K.A.; Collins, K.I.; Cooke, B.F.; Csubry, Z.; dos Santos, L.A.; Eigmuller, P.; Fausnaugh, M.M.; Gan, T.; Gillon, M.; Goad, M.R.; Guerrero, N.; Hagelberg, J.; Hart, R.; Henning, T.; Huang, C.X.; Jehin, E.; Jenkins, J.S.; Jordan, A.; Kielkopf, J.F.; Kossakowski, D.; Lavie, B.; Law, N.; Lendl, M.; de Leon, J.P.; Lovis, C.; Mann, A.W.; Marmier, M.; McCormac, J.; Mori, M.; Moyano, M.; Narita, N.; Osip, D.; Otegi, J.F.; Pepe, F.; Pozuelos, F.J.; Raynard, L.; Relles, H.M.; Sarkis, P.; Segransan, D.; Seidel, J.V.; Shporer, A.; Stalport, M.; Stockdale, C.; Suc, V.; Tamura, M.; Tan, T.G.; Tilbrook, R.H.; Ting, E.B.; Trifonov, T.; Udry, S.; Vanderburg, A.; Wheatley, P.J.; Wingham, G.; Zhan, Z.; Ziegler, C.
Title Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b Type
Year 2020 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 639 Issue Pages 17 pp
Keywords planets and satellites: detection; planets and satellites: individual: TOI-129; planets and satellites: individual: HIP 65A; planets and satellites: individual: TOI-157
Abstract We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 M-J planet in a grazing transit configuration with an impact parameter of b = 1.17(-0.08)(+0.10) b=1.17-0.08+0.10 . As a result the radius is poorly constrained, 2.03(-0.49)(+0.61)R(J) 2.03-0.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107-109 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 M-J and a radius of 1.29 +/- 0.02 R-J. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 +/- 0.06 M-J and a radius of 1.09(-0.05)(+0.08)R(J) 1.09-0.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.
Address [Nielsen, L. D.; Bouchy, F.; Turner, O.; dos Santos, L. A.; Hagelberg, J.; Lavie, B.; Lendl, M.; Lovis, C.; Marmier, M.; Otegi, J. F.; Pepe, F.; Segransan, D.; Seidel, J., V; Stalport, M.; Udry, S.] Univ Geneva, Geneva Observ, Chemin Mailettes 51, CH-1290 Versoix, Switzerland, Email: louise.nielsen@unige.ch
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-0746 ISBN Medium
Area Expedition Conference
Notes WOS:000554478300001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1215
Permanent link to this record
 

 
Author (up) Schlecker, M.; Kossakowski, D.; Brahm, R.; Espinoza, N.; Henning, T.; Carone, L.; Molaverdikhani, K.; Trifonov, T.; Molliere, P.; Hobson, MJ.; Jordan, A.; Rojas, FI.; Klahr, H.; Sarkis, P.; Bakos, GA.; Bhatti, W.; Osip, D.; Suc, V.; Ricker, G.; Vanderspek, R.; Latham, DW.; Seager, S.; Winn, JN.; Jenkins, JM.; Vezie, M.; Villasenor, JN.; Rose, ME.; Rodriguez, DR.; Rodriguez, JE.; Quinn, SN.; Shporer, A.
Title A highly eccentric warm jupiter orbiting TIC 237913194 Type
Year 2020 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 160 Issue 6 Pages 275
Keywords Exoplanet astronomy; Transit photometry; Radial velocity; Exoplanet dynamics; Exoplanet atmospheres; Exoplanet structure; Hot Jupiters; Extrasolar gas giants
Abstract The orbital parameters of warm Jupiters serve as a record of their formation history, providing constraints on formation scenarios for giant planets on close and intermediate orbits. Here, we report the discovery of TIC.237913194b, detected in full-frame images from Sectors 1 and 2 of the Transiting Exoplanet Survey Satellite (TESS), ground-based photometry (Chilean-Hungarian Automated Telescope, Las Cumbres Observatory Global Telescope), and Fiber-fed Extended Range Optical Spectrograph radial velocity time series. We constrain its mass to M-P = 1.942(-0.091)(+0.091) M-J and its radius to R-P = 1.117(-0.047)(+0.054) R-J, implying a bulk density similar to Neptune's. It orbits a G-type star (M-* = 1.026(-0.055)(+0.057) M-circle dot, V = 12.1 mag) with a period of 15.17 days on one of the most eccentric orbits of all known warm giants (e approximate to 0.58). This extreme dynamical state points to a past interaction with an additional, undetected massive companion. A tidal evolution analysis showed a large tidal dissipation timescale, suggesting that the planet is not a progenitor for a hot Jupiter caught during its high-eccentricity migration. TIC.237913194b further represents an attractive opportunity to study the energy deposition and redistribution in the atmosphere of a warm Jupiter with high eccentricity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1286
Permanent link to this record
 

 
Author (up) Weaver, I.C.; Lopez-Morales, M.; Espinoza, N.; Rackham, B.V.; Osip, D.J.; Apai, D.; Jordan, A.; Bixel, A.; Lewis, N.K.; Alam, M.K.; Kirk, J.; McGruder, C.; Rodler, F.; Fienco, J.
Title ACCESS: A Visual to Near-infrared Spectrum of the Hot Jupiter WASP-43b with Evidence of H2O, but No Evidence of Na or K Type
Year 2020 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 159 Issue 1 Pages 21 pp
Keywords
Abstract We present a new ground-based visual transmission spectrum of the hot Jupiter WASP-43b, obtained as part of the ACCESS Survey. The spectrum was derived from four transits observed between 2015 and 2018, with combined wavelength coverage between 5300 and 9000 A and an average photometric precision of 708 ppm in 230 A bins. We perform an atmospheric retrieval of our transmission spectrum combined with literature Hubble Space Telescope/WFC3 observations to search for the presence of clouds/hazes as well as Na, K, H alpha, and H2O planetary absorption and stellar spot contamination over a combined spectral range of 5318-16420 A. We do not detect a statistically significant presence of Na i or K i alkali lines, or H alpha in the atmosphere of WASP-43b. We find that the observed transmission spectrum can be best explained by a combination of heterogeneities on the photosphere of the host star and a clear planetary atmosphere with H2O. This model yields a log evidence of 8.26 0.42 higher than a flat (featureless) spectrum. In particular, the observations marginally favor the presence of large, low-contrast spots over the four ACCESS transit epochs with an average covering fraction T = 132 K 132 K. Within the planet's atmosphere, we recover a log H2O volume mixing ratio of -2.78(-1.47)(+1.38), which is consistent with previous H2O abundance determinations for this planet.
Address [Weaver, Ian C.; Lopez-Morales, Mercedes; Alam, Munazza K.; Kirk, James; McGruder, Chima] Harvard & Smithsonian, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA, Email: iweaver@cfa.harvard.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000519136000001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1168
Permanent link to this record