|   | 
Details
   web
Records
Author (up) Pereira, J.; Ritt, M.; Vasquez, O.C.
Title A memetic algorithm for the cost-oriented robotic assembly line balancing problem Type
Year 2018 Publication Computers & Operations Research Abbreviated Journal Comput. Oper. Res.
Volume 99 Issue Pages 249-261
Keywords Line balancing; Cost-oriented line balancing; Robotic assembly line; Hybrid algorithms
Abstract In order to minimize costs, manufacturing companies have been relying on assembly lines for the mass production of commodity goods. Among other issues, the successful operation of an assembly line requires balancing work among the stations of the line in order to maximize its efficiency, a problem known in the literature as the assembly line balancing problem, ALBP. In this work, we consider an ALBP in which task assignment and equipment decisions are jointly considered, a problem that has been denoted as the robotic ALBP. Moreover, we focus on the case in which equipment has different costs, leading to a cost-oriented formulation. In order to solve the problem, which we denote as the cost-oriented robotic assembly line balancing problem, cRALBP, a hybrid metaheuristic is proposed. The metaheuristic embeds results obtained for two special cases of the problem within a genetic algorithm in order to obtain a memetic algorithm, applicable to the general problem. An extensive computational experiment shows the advantages of the hybrid approach and how each of the components of the algorithm contributes to the overall ability of the method to obtain good solutions. (C) 2018 Elsevier Ltd. All rights reserved.
Address [Pereira, Jordi] Univ Adolfo Ibanez, Fac Engn & Sci, Av Padre Hurtado 750,Off C216, Vina Del Mar, Chile, Email: jorge.pereira@uai.cl;
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-0548 ISBN Medium
Area Expedition Conference
Notes WOS:000442059400019 Approved
Call Number UAI @ eduardo.moreno @ Serial 907
Permanent link to this record
 

 
Author (up) Pereira, J.; Vasquez, O.C.
Title The single machine weighted mean squared deviation problem Type
Year 2017 Publication European Journal Of Operational Research Abbreviated Journal Eur. J. Oper. Res.
Volume 261 Issue 2 Pages 515-529
Keywords Scheduling; Single machine; JIT; Branch-and-cut; Dominance properties
Abstract This paper studies a single machine problem related to the just-In-Time (JIT) production objective in which the goal is to minimize the sum of weighted mean squared deviation of the completion times with respect to a common due date. In order to solve the problem, several structural and dominance properties of the optimal solution are investigated. These properties are then integrated within a branch and-cut approach to solve a time-indexed formulation of the problem. The results of a computational experiment with the proposed algorithm show that the method is able to optimally solve instances with up to 300 jobs within reduced running times, improving other integer programming approaches. (C) 2017 Elsevier B.V. All rights reserved.
Address [Pereira, Jordi] Univ Adolfo Ibanez, Dept Engn & Sci, Av Padre Hurtado 750,Off C216, Vina Del Mar, Chile, Email: jorge.pereira@uai.cl;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0377-2217 ISBN Medium
Area Expedition Conference
Notes WOS:000401206300009 Approved
Call Number UAI @ eduardo.moreno @ Serial 730
Permanent link to this record
 

 
Author (up) Pereira, J.; Vila, M.
Title A new model for supply chain network design with integrated assembly line balancing decisions Type
Year 2016 Publication International Journal Of Production Research Abbreviated Journal Int. J. Prod. Res.
Volume 54 Issue 9 Pages 2653-2669
Keywords decomposition; mixed integer linear programming; supply chain design; line balancing; SALBP-1
Abstract Supply chain network design aims at the integration of the different actors of a supply chain within a single framework in order to optimise the total profit of the system. In this paper, we consider the integration of line balancing issues within the tactical decisions of the supply chain, and we offer a novel model and a solution approach for the problem. The new approach decomposes the problem into multiple line balancing problems and a mixed integer linear model, which is easier to solve than the previously available non-linear mixed integer formulation. The results show that the new method is able to solve previously studied models within a fraction of the reported running times, and also allows us to solve larger instances than those reported in earlier works. Finally, we also provide some analysis on the influence of the cost structure, the demand and the structure of the assembly process on the final configuration of the assemblies and the distribution network.
Address [Pereira, Jordi] Univ Adolfo Ibanez, Fac Sci & Engn, Vina Del Mar, Chile, Email: jorge.pereira@uai.cl
Corporate Author Thesis
Publisher Taylor & Francis Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7543 ISBN Medium
Area Expedition Conference
Notes WOS:000373632300009 Approved
Call Number UAI @ eduardo.moreno @ Serial 608
Permanent link to this record
 

 
Author (up) Ritt, M.; Pereira, J.
Title Heuristic and exact algorithms for minimum-weight non-spanning arborescences Type
Year 2020 Publication European Journal Of Operational Research Abbreviated Journal Eur. J. Oper. Res.
Volume 287 Issue 1 Pages 61-75
Keywords Minimum-weight non-spanning arborescence; Heuristic; Iterated Local Search; Branch-and-cut
Abstract We address the problem of finding an arborescence of minimum total edge weight rooted at a given vertex in a directed, edge-weighted graph. If the arborescence must span all vertices the problem is solvable in polynomial time, but the non-spanning version is NP-hard. We propose reduction rules which determine vertices that are required or can be excluded from optimal solutions, a modification of Edmonds algorithm to construct arborescences that span a given set of selected vertices, and embed this procedure into an iterated local search for good vertex selections. Moreover, we propose a cutset-based integer linear programming formulation, provide different linear relaxations to reduce the number of variables in the model and solve the reduced model using a branch-and-cut approach. We give extensive computational results showing that both the heuristic and the exact methods are effective and obtain better solutions on instances from the literature than existing approaches, often in much less time. (C) 2020 Elsevier B.V. All rights reserved.
Address [Ritt, Marcus] Univ Fed Rio Grande do Sul, Inst Informat, Av Bento Goncalves 9500, Porto Alegre, RS, Brazil, Email: marcus.ritt@inf.ufrgs.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0377-2217 ISBN Medium
Area Expedition Conference
Notes WOS:000541072800005 Approved
Call Number UAI @ eduardo.moreno @ Serial 1187
Permanent link to this record
 

 
Author (up) Sandoval, G.; Alvarez-Miranda, E.; Pereira, J.; Rios-Mercado, R.Z.; Diaz, J.A.
Title A novel districting design approach for on-time last-mile delivery: An application on an express postal company Type
Year 2022 Publication Omega-International Journal Of Management Science Abbreviated Journal Omega-Int. J. Manage. Sci.
Volume 113 Issue Pages 102687
Keywords Districting; Last-mile delivery; Postal delivery; Supply chain management; Heuristics
Abstract Last-mile logistics corresponds to the last leg of the supply chain, i.e., the delivery of goods to final cus-tomers, and they comprise the core activities of postal and courier companies. Because of their role in the supply chain, last-mile operations are critical for the perception of customers regarding the perfor-mance of the whole logistic process. In this sense, the sustained growth of e-commerce, which has been abruptly catalyzed by the irruption of the COVID-19 pandemic, has hanged the habits of customers and overtaxed the operational side of delivery companies, hindering their viability and forcing their adap-tation to the novel conditions. Many of these habits will remain after we overcome the sanitary crisis, which will permanently reshape the structure and emphasis of postal supply chains, demanding compa-nies to implement organizational and operational changes to adapt to these new challenges. In this work we address a last-mile logistic design problem faced by a courier and delivery company in Chile, although the same problem is likely to arise in the last-mile delivery operation of other postal companies, in particular in the operation of express delivery services. The operational structure of the company is based on the division of an urban area into smaller territories (districts) and the outsourcing of the delivery operation of each territory to a last-mile contractor. Because of the increasing volume of postal traffic and a decreasing performance of the service, in particular for the case of express deliveries, the company is forced to redesign its current territorial arrangement. Such redesign results in a novel optimization problem that resembles a classical districting problem with the additional quality of service requirements. This novel problem is first formulated as a mathematical programming model and then a specially tailored heuristic is designed for solving it. The proposed approach is tested on instances from the real-life case study, and the obtained results show significant improvements in terms of the percent-age of on-time deliveries achieved by the proposed solution when compared to the current districting design of the company. By performing a sensitivity analysis considering different levels of demand, we show that the proposed approach is effective in providing districting designs capable of enduring signifi-cant increases in the demand for express postal services.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-0483 ISBN Medium
Area Expedition Conference
Notes WOS:000809666900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1605
Permanent link to this record
 

 
Author (up) Yuraszeck, F.; Mejia, G.; Pereira, J.; Vila, M.
Title A Novel Constraint Programming Decomposition Approach for the Total Flow Time Fixed Group Shop Scheduling Problem Type
Year 2022 Publication Mathematics Abbreviated Journal Mathematics
Volume 10 Issue 3 Pages 329
Keywords scheduling; fixed group shop; group shop; constraint programming
Abstract This work addresses a particular case of the group shop scheduling problem (GSSP) which will be denoted as the fixed group shop scheduling problem (FGSSP). In a FGSSP, job operations are divided into stages and each stage has a set of machines associated to it which are not shared with the other stages. All jobs go through all the stages in a specific order, where the operations of the job at each stage need to be finished before the job advances to the following stage, but operations within a stage can be performed in any order. This setting is common in companies such as leaf spring manufacturers and other automotive companies. To solve the problem, we propose a novel heuristic procedure that combines a decomposition approach with a constraint programming (CP) solver and a restart mechanism both to avoid local optima and to diversify the search. The performance of our approach was tested on instances derived from other scheduling problems that the FGSSP subsumes, considering both the cases with and without anticipatory sequence-dependent setup times. The results of the proposed algorithm are compared with off-the-shelf CP and mixed integer linear programming (MILP) methods as well as with the lower bounds derived from the study of the problem. The experiments show that the proposed heuristic algorithm outperforms the other methods, specially on large-size instances with improvements of over 10% on average.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-7390 ISBN Medium
Area Expedition Conference
Notes WOS:000756126100001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1549
Permanent link to this record