|   | 
Details
   web
Records
Author Cont, D.; Yan, F.; Reiners, A.; Nortmann, L.; Molaverdikhani, K.; Palle, E.; Stangret, M.; Henning, T.; Ribas, I.; Quirrenbach, A.; Caballero, J.A.; Osorio, M.R.Z.; Amado, P.J.; Aceituno, J.; Casasayas-Barris, N.; Czesla, S.; Kaminski, A.; Lopez-Puertas, M.; Montes, D.; Morales, J.C.; Morello, G.; Nagel, E.; Sanchez-Lopez, A.; Sedaghati, E.; Zechmeister, M.
Title Silicon in the dayside atmospheres of two ultra-hot Jupiters Type
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 657 Issue Pages L2
Keywords planets and satellites: atmospheres; techniques: spectroscopic; planets and satellites: individual: WASP-33b; planets and satellites: individual: KELT-20b/MASCARA-2b
Abstract Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000740006300008 Approved
Call Number UAI @ alexi.delcanto @ Serial 1535
Permanent link to this record
 

 
Author Sedaghati, E.; Sanchez-Lopez, A.; Czesla, S.; Lopez-Puertas, M.; Amado, P.J.; Palle, E.; Molaverdikhani, K.; Caballero, J.A.; Nortmann, L.; Quirrenbach, A.; Reiners, A.; Ribas, I.
Title Moderately misaligned orbit of the warm sub-Saturn HD 332231 b Type
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 659 Issue Pages A44
Keywords planets and satellites: individual: HD 332231b; planets and satellites: atmospheres; methods: observational; techniques: spectroscopic; techniques: radial velocities
Abstract Measurements of exoplanetary orbital obliquity angles for different classes of planets are an essential tool in testing various planet formation theories. Measurements for those transiting planets on relatively large orbital periods (P > 10 d) present a rather difficult observational challenge. Here we present the obliquity measurement for the warm sub-Saturn planet HD 332231 b, which was discovered through Transiting Exoplanet Survey Satellite photometry of sectors 14 and 15, on a relatively large orbital period (18.7 d). Through a joint analysis of previously obtained spectroscopic data and our newly obtained CARMENES transit observations, we estimated the spin-orbit misalignment angle, lambda to be -42.0(-10.6)(+11.3) deg, which challenges Laplacian ideals of planet formation. Through the addition of these new radial velocity data points obtained with CARMENES, we also derived marginal improvements on other orbital and bulk parameters for the planet, as compared to previously published values. We showed the robustness of the obliquity measurement through model comparison with an aligned orbit. Finally, we demonstrated the inability of the obtained data to probe any possible extended atmosphere of the planet, due to a lack of precision, and place the atmosphere in the context of a parameter detection space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000763639300002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1548
Permanent link to this record
 

 
Author Trifonov, T.; Wollbold, A.; Kurster, M.; Eberhardt, J.; Stock, S.; Henning, T.; Reffert, S.; Butler, R.P.; Vogt, S.S.; Reiners, A.; Lee, M.H.; Bitsch, B.; Zechmeister, M.; Rodler, F.; Perdelwitz, V.; Tal-Or, L.; Rybizki, J.; Heeren, P.; Gandolfi, D.; Barragan, O.; Zakhozhay, O.; Sarkis, P.; Pinto, M.T.; Kossakowski, D.; Wolthoff, V.; Brems, S.S.; Passegger, V.M.
Title A New Third Planet and the Dynamical Architecture of the HD33142 HD 33142 Planetary System Type
Year 2022 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 164 Issue 4 Pages 156
Keywords GAS GIANT PLANETS; STELLAR PARAMETERS; STARS; EVOLUTION; MASS; SEARCH; DWARF; II; MIGRATION; EXOPLANET
Abstract Based on recently-taken and archival HARPS, FEROS, and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD 33142 (with an improved mass estimate of M1.52 +/- 0.03 M-circle dot), already known to host two planets. We confirm the Jovian-mass planets HD 33142b and c, with periods of P-b = 330.0(-0.4)(+0.4) days and P-c = 810. 2(-4.2)(+3.8) days and minimum dynamical masses of m(b) sin i =1.26(-0.05)(+0.05) M-Jup and m(c) sin i = 0.89(-0.05)(+0.06) M-Jup, respectively. Furthermore, our periodogram analysis of the precise RVs shows strong evidence for a short-period Doppler signal in the residuals of a two-planet Keplerian fit, which we interpret as a third, Saturn-mass planet with m(d) sin i = 0.20(-)(0.03)(+0.02) M-Jup in a close-in orbit with an orbital period of P-d = 89.9(-0.1)(+0.1) days. We study the dynamical behavior of the three-planet system configuration with an N-body integration scheme, finding it to be long-term stable with the planets alternating between low and moderate eccentricity episodes. We also perform N-body simulations, including stellar evolution and second-order dynamical effects such as planet-stellar tides and stellar mass loss on the way to the white dwarf phase. We find that planets HD 33142b, c, and d are likely to be engulfed near the tip of the red giant branch phase due to tidal migration. These results make the HD 33142 system an essential benchmark for planet population statistics of the multiple-planet systems found around evolved stars.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000856534500001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1651
Permanent link to this record
 

 
Author Yan, F.; Espinoza, N.; Molaverdikhani, K.; Henning, T.; Mancini, L.; Mallonn, M.; Rackham, B.V.; Apai, D.; Jordan, A.; Molliere, P.; Chen, G.; Carone, L.; Reiners, A.
Title LBT transmission spectroscopy of HAT-P-12b: Confirmation of a cloudy atmosphere with no significant alkali features Type
Year 2020 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 642 Issue Pages 13 pp
Keywords planets and satellites: atmospheres; techniques: spectroscopic; stars: atmospheres; planets and satellites: individual: HAT-P-12b
Abstract The hot sub-Saturn-mass exoplanet HAT-P-12b is an ideal target for transmission spectroscopy because of its inflated radius. We observed one transit of the planet with the multi-object double spectrograph (MODS) on the Large Binocular Telescope (LBT) with the binocular mode and obtained an atmosphere transmission spectrum with a wavelength coverage of similar to 0.4-0.9 μm. The spectrum is relatively flat and does not show any significant sodium or potassium absorption features. Our result is consistent with the revised Hubble Space Telescope (HST) transmission spectrum of a previous work, except that the HST result indicates a tentative detection of potassium. The potassium discrepancy could be the result of statistical fluctuation of the HST dataset. We fit the planetary transmission spectrum with an extensive grid of cloudy models and confirm the presence of high-altitude clouds in the planetary atmosphere. The fit was performed on the combined LBT and HST spectrum, which has an overall wavelength range of 0.4-1.6 μm. The LBT/MODS spectrograph has unique advantages in transmission spectroscopy observations because it can cover a wide wavelength range with a single exposure and acquire two sets of independent spectra simultaneously.
Address [Yan, F.; Reiners, A.] Georg August Univ, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: fei.yan@uni-goettingen.de
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-0746 ISBN Medium
Area Expedition Conference
Notes WOS:000581918600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1237
Permanent link to this record