toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Alfaro, J.; Rubio, C.; San Martin, M. doi  openurl
  Title Cosmological Fluctuations in Delta Gravity Type
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 7 Pages 315  
  Keywords cosmology; modified gravity; cosmic microwave background; cosmological perturbations; dark energy  
  Abstract About 70% of the Universe is Dark Energy, but the physics community still does not know what it is. Delta gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. Previously, we studied the Universe's accelerated expansion, where DG was able to explain the SNe-Ia data successfully. In this work, we computed the cosmological fluctuations in DG that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations. This provided the necessary equations to solve the scalar TT power spectrum in a semi-analytical way. These equations are useful for comparing the DG theory with astronomical observations and thus being able to constrain the DG cosmology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-1997 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038838800001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1866  
Permanent link to this record
 

 
Author Rubio, C.A.; Asenjo, F.A.; Hojman, S.A. doi  openurl
  Title Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy Type
  Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry  
  Volume 11 Issue 7 Pages  
  Keywords  
  Abstract A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000481979000025 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1048  
Permanent link to this record
 

 
Author Nastase, H.; Rojas, F.; Rubio, C. doi  openurl
  Title Celestial IR divergences in general most-subleading-color gluon and gravity amplitudes Type
  Year 2022 Publication Journal Of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume Issue 1 Pages 136  
  Keywords Scattering Amplitudes; Conformal Field Theory  
  Abstract Gluon amplitudes at most-subleading order in the 1/N expansion share a remarkable simplicity with graviton amplitudes: collinear divergences are completely absent in both and, as a consequence, their full IR behavior arises from soft gluon/graviton exchange among the external states. In this paper we study the effect of all-loop IR divergences of celestial most-subleading color gluon amplitudes and their similarities with the celestial gravity case. In particular, a simple celestial exponentiation formula for the dipole part can be written. We also analize how this exponentiation is modified by non-dipole contributions. Finally we also show that, in the Regge limit, the soft factor satisfies the Knizhnik-Zamolodchikov equation hinting at the possibility that, in this limit, an effective Wess-Zumino-Witten model would describe the dynamics of the infrared sector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000746997500001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1530  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: