|   | 
Details
   web
Records
Author Pabba, D.P.; Satthiyaraju, M.; Ramasdoss, A.; Sakthivel, P.; Chidhambaram, N.; Dhanabalan, S.; Abarzua, C.V.; Morel, M.J.; Udayabhaskar, R.; Mangalaraja, R.V.; Aepuru, R.; Kamaraj, S.K.; Murugesan, P.K.; Thirumurugan, A.
Title MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications Type
Year 2023 Publication Micromachines Abbreviated Journal Micromachines
Volume 14 Issue 6 Pages 1273
Keywords MXene; energy harvesting; composite materials; piezoelectric; triboelectric nanogenerator
Abstract Due to its superior advantages in terms of electronegativity, metallic conductivity, mechanical flexibility, customizable surface chemistry, etc., 2D MXenes for nanogenerators have demonstrated significant progress. In order to push scientific design strategies for the practical application of nanogenerators from the viewpoints of the basic aspect and recent advancements, this systematic review covers the most recent developments of MXenes for nanogenerators in its first section. In the second section, the importance of renewable energy and an introduction to nanogenerators, major classifications, and their working principles are discussed. At the end of this section, various materials used for energy harvesting and frequent combos of MXene with other active materials are described in detail together with the essential framework of nanogenerators. In the third, fourth, and fifth sections, the materials used for nanogenerators, MXene synthesis along with its properties, and MXene nanocomposites with polymeric materials are discussed in detail with the recent progress and challenges for their use in nanogenerator applications. In the sixth section, a thorough discussion of the design strategies and internal improvement mechanisms of MXenes and the composite materials for nanogenerators with 3D printing technologies are presented. Finally, we summarize the key points discussed throughout this review and discuss some thoughts on potential approaches for nanocomposite materials based on MXenes that could be used in nanogenerators for better performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-666X ISBN Medium
Area Expedition Conference
Notes WOS:001017369800001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1825
Permanent link to this record
 

 
Author Sakthivel, P.; Mangalaraja, R.V.; Ramalingam, G.; Sakthipandi, K.; Gowtham, V.
Title Synthesis, Structure, Morphology, Element composition, Electrochemical, and Optical studies of Zn0.98-XMn0.02CeX Quantum dots Type
Year 2023 Publication Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy Abbreviated Journal Spectrochim. Acta A Mol. Biomol. Spectrosc.
Volume 303 Issue Pages 123140
Keywords ZnS; HR-TEM; Cyclic voltammetry; Band gap; Rare earth; Photoluminescence
Abstract Quantum dots (QDs) are semiconductors whose size falls in a range between 1 and 10 nm; they are generally known as zero-dimension materials. It finds various applications in optical industries including light-emitting diodes, display technology, imaging, and labelling. ZnS is one of the excellent QDs in its class of II-VI semiconductors. In this paper, It is reported that the preparation of Mn-doped ZnS and Mn, Ce co-doped ZnS QDs using facile co-precipitation technique. XRD and HR-TEM results confirmed the cubic structure, particle size, and phase of the synthesized particles, and the crystallite is measured as -2 nm. The surface morphology, elemental analysis, and FT-IR spectra revealed the purity of the samples and confirmed the presence of dopants as expected. Cyclic voltammetry studies expressed the electrochemical behaviour of the samples, which increased as a function of Ce3+ doping concentration. UV-visible absorbance and transmittance spectra disclosed the optical characteristics of the samples. A wide band gap (4.02 eV) was received for 2% Ce-doped Zn: MnS QDs. Week Blue and strong yellow emissions were received for 4% Ce-doped Zn:MnS QDs. Whereas, high intensity red-emission was received for 2% Ce-doped Zn:MnS QDs. The different colour emissions are discussed in terms of defects produced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425 ISBN Medium
Area Expedition Conference
Notes WOS:001058679500001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1885
Permanent link to this record