|   | 
Details
   web
Records
Author Millan, C.; Vivanco, J.F.; Benjumeda-Wijnhoven, I.M.; Bjelica, S.; Santibanez, J.F.
Title Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration Type
Year 2018 Publication Cell Biology And Translational Medicine Abbreviated Journal Adv.Exp.Med.Biol.
Volume (down) 1107 Issue Pages 91-112
Keywords Bioceramics; Bone regeneration; Calcium phosphate; Dental; Mesenchymal stem cells; Tissue engineering
Abstract In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calciumphosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Address [Millan, Carola] Univ Adolfo Ibanez, Fac Artes Liberales, Fac Ingn & Ciencias, Vina Del Mar, Chile, Email: jfsantibanez@imi.bg.ac.rs
Corporate Author Thesis
Publisher Springer International Publishing Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0065-2598 ISBN Medium
Area Expedition Conference
Notes WOS:000458010000007 Approved
Call Number UAI @ eduardo.moreno @ Serial 979
Permanent link to this record
 

 
Author Wijnhoven, I.B.; Vallejos, R.; Santibanez, J.F.; Millan, C.; Vivanco, J.F.
Title Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics Type
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume (down) 10 Issue 1 Pages 14 pp
Keywords
Abstract The combination of biomaterials and stem cells for clinical applications constitute a great challenge in bone tissue engineering. Hence, cellular networks derived from cells-biomaterials crosstalk have a profound influence on cell behaviour and communication, preceding proliferation and differentiation. The purpose of this study was to investigate in vitro cellular networks derived from human gingival mesenchymal stem cells (hGMSCs) and calcium phosphate (CaP) bioceramic interaction. Biological performance of CaP bioceramic and hGMSCs interaction was evaluated through cell adhesion and distribution, cellular proliferation, and potential osteogenic differentiation, at three different times: 5 h, 1 week and 4 weeks. Results confirmed that hGMSCs met the required MSCs criteria while displaying osteogenic differentiaton capacities. We found a significant increase of cellular numbers and proliferation levels. Also, protein and mRNA OPN expression were upregulated in cells cultured with CaP bioceramic by day 21, suggesting an osteoinductible effect of the CaP bioceramic on hGMSCs. Remarkably, CaP bioceramic aggregations were obtained through hGMSCs bridges, suggesting the in vitro potential of macrostructures formation. We conclude that hGMSCs and CaP bioceramics with micro and macropores support hGMSC adhesion, proliferation and osteogenic differentiation. Our results suggest that investigations focused on the interface cells-biomaterials are essential for bone tissue regenerative therapies.
Address [Vallejos, Raul; Vivanco, Juan F.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Vina Del Mar, Chile, Email: juan.vivanco@uai.cl
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000577291800004 Approved
Call Number UAI @ alexi.delcanto @ Serial 1235
Permanent link to this record
 

 
Author Plominsky, A.M.; Henriquez-Castillo, C.; Delherbe, N.; Podell, S.; Ramirez-Flandes, S.; Ugalde, J.A.; Santibanez, J.F.; van den Engh, G.; Hanselmann, K.; Ulloa, O.; De la Iglesia, R.; Allen, E.E.; Trefault, N.
Title Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation Type
Year 2018 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.
Volume (down) 9 Issue Pages 13 pp
Keywords hypersaline environments; solar salterns; metagenomics; microbial ecology; environmental adaptation; functional metagenomics; artisanal crystallizer pond
Abstract Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cahuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cahuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cahuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
Address [Plominsky, Alvaro M.; Henriquez-Castillo, Carlos; Santibanez, Juan F.; Ulloa, Osvaldo] Univ Concepcion, Fac Nat & Oceanog Sci, Dept Oceanog, Concepcion, Chile, Email: eallen@ucsd.edu;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Medium
Area Expedition Conference
Notes WOS:000441537100001 Approved
Call Number UAI @ eduardo.moreno @ Serial 895
Permanent link to this record
 

 
Author Lavin, P.; Gonzalez, B.; Santibanez, J.F.; Scanlan, D.J.; Ulloa, O.
Title Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific Type
Year 2010 Publication Environmental Microbiology Reports Abbreviated Journal Environ. Microbiol. Rep.
Volume (down) 2 Issue 6 Pages 728-738
Keywords
Abstract P>The eastern tropical Pacific Ocean holds two of the main oceanic oxygen minimum zones of the global ocean. The presence of an oxygen-depleted layer at intermediate depths, which also impinges on the seafloor and in some cases the euphotic zone, plays a significant role in structuring both pelagic and benthic communities, and also in the vertical partitioning of microbial assemblages. Here, we assessed the genetic diversity and distribution of natural populations of the cyanobacteria Prochlorococcus and Synechococcus within oxic and suboxic waters of the eastern tropical Pacific using cloning and sequencing, and terminal restriction fragment length polymorphism (T-RFLP) analyses applied to the 16S-23S rRNA internal transcribed spacer region. With the T-RFLP approach we could discriminate 19 cyanobacterial clades, of which 18 were present in the study region. Synechococcus was more abundant in the surface oxic waters of the eastern South Pacific, while Prochlorococcus dominated the subsurface low-oxygen waters. Two of the dominant clades in the oxygen-deficient waters belong to novel and yet uncultivated lineages of low-light adapted Prochlorococcus.
Address [Lavin, Paris; Francisco Santibanez, J.; Ulloa, Osvaldo] Univ Concepcion, Dept Oceanog, Concepcion, Chile, Email: oulloa@udec.cl
Corporate Author Thesis
Publisher Wiley-Blackwell Publishing, Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-2229 ISBN Medium
Area Expedition Conference
Notes WOS:000284484700004 Approved
Call Number UAI @ eduardo.moreno @ Serial 107
Permanent link to this record