|   | 
Details
   web
Records
Author Almenara, J.M.; Bonfils, X.; Bryant, E.M.; Jordan, A.; Hebrard, G.; Martioli, E.; Correia, A.C.M.; Astudillo-Defru, N.; Cadieux, C.; Arnold, L.; Artigau, E.; Bakos, G.A.; Barros, S.C.C.; Bayliss, D.; Bouchy, F.; Boue, G.; Brahm, R.; Carmona, A.; Charbonneau, D.; Ciardi, D.R.; Cloutier, R.; Cointepas, M.; Cook, N.J.; Cowan, N.B.; Delfosse, X.; do Nascimento, J.D.; Donati, J.F.; Doyon, R.; Forveille, T.; Fouque, P.; Gaidos, E.; Gilbert, E.A.; da Silva, J.G.; Hartman, J.D.; Hesse, K.; Hobson, M.J.; Jenkins, J.M.; Kiefer, F.; Kostov, V.B.; Laskar, J.; Lendl, M.; L'Heureux, A.; Martins, J.H.C.; Menou, K.; Moutou, C.; Murgas, F.; Polanski, A.S.; Rapetti, D.; Sedaghati, E.; Shang, H.
Title TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf Type
Year 2024 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 683 Issue Pages A166
Keywords techniques: photometric; techniques: radial velocities; stars: individual: TOI-4860; stars: low-mass; planetary systems
Abstract We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R-* = 0.358 +/- 0.015 R-circle dot, M-* = 0.340 +/- 0.009 M-circle dot). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 +/- 0.03 R-J and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 +/- 0.12) and measured the mass of the planet (0.273 +/- 0.006 M-J). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 M-E) found around mid to late M dwarfs (<0.4 R-circle dot), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 +/- 0.09) with an orbital period of 427 +/- 7 days and a minimum mass of 1.66 +/- 0.26 M-J, but additional data would be needed to confirm this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:001187386700010 Approved
Call Number UAI @ alexi.delcanto @ Serial 1979
Permanent link to this record
 

 
Author Cont, D.; Yan, F.; Reiners, A.; Nortmann, L.; Molaverdikhani, K.; Palle, E.; Stangret, M.; Henning, T.; Ribas, I.; Quirrenbach, A.; Caballero, J.A.; Osorio, M.R.Z.; Amado, P.J.; Aceituno, J.; Casasayas-Barris, N.; Czesla, S.; Kaminski, A.; Lopez-Puertas, M.; Montes, D.; Morales, J.C.; Morello, G.; Nagel, E.; Sanchez-Lopez, A.; Sedaghati, E.; Zechmeister, M.
Title Silicon in the dayside atmospheres of two ultra-hot Jupiters Type
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 657 Issue Pages L2
Keywords planets and satellites: atmospheres; techniques: spectroscopic; planets and satellites: individual: WASP-33b; planets and satellites: individual: KELT-20b/MASCARA-2b
Abstract Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000740006300008 Approved
Call Number UAI @ alexi.delcanto @ Serial 1535
Permanent link to this record
 

 
Author Espinoza-Retamal, J.I.; Brahm, R.; Petrovich, C.; Jordán, A.; Stefánsson, G.; Sedaghati, E.; Hobson, M.J.; Muñoz, D.J.; Boyle, G.; Leiva, R.; Suc, V.
Title The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b Type
Year 2023 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 958 Issue 2 Pages L20
Keywords IN-SITU FORMATION; PLANET; TRANSIT; EVOLUTION; BINARY; PHOTOMETRY; SCATTERING; TELESCOPE; MIGRATION; COMPANION
Abstract High-eccentricity tidal migration predicts the existence of highly eccentric proto hot Jupiters on the “tidal circularization track,” meaning that they might eventually become hot Jupiters, but that their migratory journey remains incomplete. Having experienced moderate amounts of tidal evolution of their orbital elements, proto hot Jupiter systems can be powerful test beds for the underlying mechanisms of eccentricity growth. Notably, they may be used for discriminating between variants of high-eccentricity migration, each predicting a distinct evolution of misalignment between the star and the planet's orbit. We constrain the spin-orbit misalignment of the proto hot Jupiter TOI-3362b with high-precision radial-velocity observations using ESPRESSO at Very Large Telescope. The observations reveal a sky-projected obliquity lambda=1.2+2.8(degrees)/-2.7 and constrain the orbital eccentricity to e = 0.720 +/- 0.016, making it one of the most eccentric gas giants for which the obliquity has been measured. Although the large eccentricity and the striking orbit alignment of the planet are puzzling, we suggest that ongoing coplanar high-eccentricity migration driven by a distant companion is a possible explanation for the system's architecture. This distant companion would need to reside beyond 5 au at 95% confidence to be compatible with the available radial-velocity observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:001109357900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1929
Permanent link to this record
 

 
Author Sedaghati, E.; Jordan, A.; Brahm, R.; Munoz, D.J.; Petrovich, C.; Hobson, M.J.
Title Orbital Alignment of the Eccentric Warm Jupiter TOI-677 b Type
Year 2023 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 166 Issue 3 Pages 130
Keywords IN-SITU FORMATION; TIDAL EVOLUTION; HOT JUPITERS; EXTRASOLAR PLANETS; GIANT PLANETS; BINARY; STARS; MIGRATION; SYSTEMS; VELOCITY
Abstract Warm Jupiters lay out an excellent laboratory for testing models of planet formation and migration. Their separation from the host star makes tidal reprocessing of their orbits ineffective, which preserves the orbital architectures that result from the planet-forming process. Among the measurable properties, the orbital inclination with respect to the stellar rotational axis, stands out as a crucial diagnostic for understanding the migration mechanisms behind the origin of close-in planets. Observational limitations have made the procurement of spin-orbit measurements heavily biased toward hot Jupiter systems. In recent years, however, high-precision spectroscopy has begun to provide obliquity measurements for planets well into the warm Jupiter regime. In this study, we present Rossiter-McLaughlin (RM) measurements of the projected obliquity angle for the warm Jupiter TOI-677 b using ESPRESSO at the VLT. TOI-677 b exhibits an extreme degree of alignment (lambda = 0.3 +/- 1.3 deg), which is particularly puzzling given its significant eccentricity (e approximate to 0.45). TOI-677 b thus joins a growing class of close-in giants that exhibit large eccentricities and low spin-orbit angles, which is a configuration not predicted by existing models. We also present the detection of a candidate outer brown dwarf companion on an eccentric, wide orbit (e approximate to 0.4 and P approximate to 13 yr). Using simple estimates, we show that this companion is unlikely to be the cause of the unusual orbit of TOI-677 b. Therefore, it is essential that future efforts prioritize the acquisition of RM measurements for warm Jupiters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:001057754200001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1881
Permanent link to this record
 

 
Author Sedaghati, E.; MacDonald, R.J.; Casasayas-Barris, N.; Hoeijmakers, H.J.; Boffin, H.M.J.; Rodler, F.; Brahm, R.; Jones, M.; Sanchez-Lopez, A.; Carleo, I.; Figueira, P.; Mehner, A.; Lopez-Puertas, M.
Title A spectral survey of WASP-19b with ESPRESSO Type
Year 2021 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 505 Issue 1 Pages 435-458
Keywords methods: data analysis; techniques: spectroscopic; planets and satellites: atmospheres; planets and satellites: individual: WASP-19b; stars: activity; stars: individual: WASP-19
Abstract High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from low resolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of Hi, Fei, Mgi, Cai, Nai, and Ki neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fei and place a 3 sigma upper limit of on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02 +/- 0.15 sigma) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a similar to 100x sub-solar TiO abundance, precisely constrained to , consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000671453100031 Approved
Call Number UAI @ alexi.delcanto @ Serial 1438
Permanent link to this record
 

 
Author Sedaghati, E.; Sanchez-Lopez, A.; Czesla, S.; Lopez-Puertas, M.; Amado, P.J.; Palle, E.; Molaverdikhani, K.; Caballero, J.A.; Nortmann, L.; Quirrenbach, A.; Reiners, A.; Ribas, I.
Title Moderately misaligned orbit of the warm sub-Saturn HD 332231 b Type
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 659 Issue Pages A44
Keywords planets and satellites: individual: HD 332231b; planets and satellites: atmospheres; methods: observational; techniques: spectroscopic; techniques: radial velocities
Abstract Measurements of exoplanetary orbital obliquity angles for different classes of planets are an essential tool in testing various planet formation theories. Measurements for those transiting planets on relatively large orbital periods (P > 10 d) present a rather difficult observational challenge. Here we present the obliquity measurement for the warm sub-Saturn planet HD 332231 b, which was discovered through Transiting Exoplanet Survey Satellite photometry of sectors 14 and 15, on a relatively large orbital period (18.7 d). Through a joint analysis of previously obtained spectroscopic data and our newly obtained CARMENES transit observations, we estimated the spin-orbit misalignment angle, lambda to be -42.0(-10.6)(+11.3) deg, which challenges Laplacian ideals of planet formation. Through the addition of these new radial velocity data points obtained with CARMENES, we also derived marginal improvements on other orbital and bulk parameters for the planet, as compared to previously published values. We showed the robustness of the obliquity measurement through model comparison with an aligned orbit. Finally, we demonstrated the inability of the obtained data to probe any possible extended atmosphere of the planet, due to a lack of precision, and place the atmosphere in the context of a parameter detection space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000763639300002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1548
Permanent link to this record