toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Chen, Y.; Bo Liu, B.; Luo, Y.; Martinez-Villalobos, C.; Guoyu Ren, G.; Huang, Y.; Zhang, S.; Sun, Y.; Zhang, Z doi  openurl
  Title Relative Contribution of Moisture Transport during TC-Active and TC-Inactive Periods to the Precipitation in Henan Province of North China: Mean State and an Extreme Event Type
  Year 2023 Publication Journal of Climate Abbreviated Journal J. Clim.  
  Volume 36 Issue 11 Pages 3611-3623  
  Keywords  
  Abstract A Lagrangian model—the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)—is used to quantify changes in moisture sources and paths for precipitation over North China’s Henan Province associated with tropical cyclone (TC) over the western North Pacific (WNP) during July–August of 1979–2021. During TC-active periods, an anomalous cyclone over the WNP enhances southeasterly and reduces southwesterly moisture transport to Henan. Accordingly, compared to TC-inactive periods, moisture contributions from the Pacific Ocean (PO), eastern China (EC), and the local area (Local) are significantly enhanced by 48.32% (16.73% versus 11.28%), 20.42% (9.44% versus 7.84%), and 2.89% (4.91% versus 4.77%), respectively, while moisture contributions from the Indian Ocean (IO), Southwestern China (SWC), Eurasia (EA), and the South China Sea (SCS) are significantly reduced by −31.90% (8.61% versus 12.64%), −16.27% (4.60% versus 5.50%), −8.81% (19.10% versus 20.95%), and −6.92% (12.18% versus 13.09%). Furthermore, the moisture transport for a catastrophic extreme rainfall event during 17–22 July (“21⋅7” event) influenced by Typhoon Infa is investigated. Compared to the mean state during TC-active periods, the moisture contribution from the PO was substantially increased by 126.32% (37.87% versus 16.73%), while that from IO significantly decreased by −98.26% (0.15% versus 8.61%) during the “21⋅7” event. Analyses with a bootstrap resampling method show that moisture contributions from the PO fall outside the +6σ range, for both the TC-active and TC-inactive probability distributions. Thus, the “21⋅7” event is rare and extreme in terms of the moisture contribution from the PO, with the occurrence probability being less than 1 in 1 million times.

Significance Statement

Henan, one of the most populated provinces in China, experienced a catastrophic extreme precipitation event in July 2021 (the “21⋅7” event), coinciding with the activity of a tropical cyclone (TC) over the western North Pacific, which helps establish the moisture channel. Using a Lagrangian model, we provide a better understanding of how moisture transport changes associated with TC for the mean state of 1979–2021, and reveal how extreme is the moisture transport for the “21⋅7” event with the bootstrap technique. It is found that during active TC periods, the moisture contribution from the Pacific Ocean (the Indian Ocean) is significantly enhanced (reduced). For every 1 000 000 six-day events, less than one instance like the “21⋅7” event should be expected.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1784  
Permanent link to this record
 

 
Author (up) Gao, T.H.; Qaiumzadeh, A.; Troncoso, R.E.; Haku, S.; An, H.Y.; Nakayama, H.; Tazaki, Y.; Zhang, S.; Tu, R.; Asami, A.; Brataas, A.; Ando, K. doi  openurl
  Title Impact of inherent energy barrier on spin-orbit torques in magnetic-metal/semimetal heterojunctions Type
  Year 2023 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 14 Issue 1 Pages  
  Keywords ELECTRONS; DRIVEN; TRANSPORT; DYNAMICS  
  Abstract Spintronic devices are based on heterojunctions of two materials with different magnetic and electronic properties. Although an energy barrier is naturally formed even at the interface of metallic heterojunctions, its impact on spin transport has been overlooked. Here, using diffusive spin Hall currents, we provide evidence that the inherent energy barrier governs the spin transport even in metallic systems. We find a sizable field-like torque, much larger than the damping-like counterpart, in Ni81Fe19/Bi0.1Sb0.9 bilayers. This is a distinct signature of barrier-mediated spin-orbit torques, which is consistent with our theory that predicts a strong modification of the spin mixing conductance induced by the energy barrier. Our results suggest that the spin mixing conductance and the corresponding spin-orbit torques are strongly altered by minimizing the work function difference in the heterostructure. These findings provide a new mechanism to control spin transport and spin torque phenomena by interfacial engineering of metallic heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001054831600006 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1886  
Permanent link to this record
 

 
Author (up) Zhang, S.H.; Chen, YRX.; Luo, Y.L.; Liu, B.; Ren, G.Y.; Zhou, T.J.; Martinez-Villalobos, C.; Chang, M.Y. doi  openurl
  Title Revealing the Circulation Pattern Most Conducive to Precipitation Extremes in Henan Province of North China Type
  Year 2022 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 49 Issue 7 Pages e2022GL098034  
  Keywords SUMMER MONSOON  
  Abstract Two catastrophic extreme precipitation events in July 2021 and August 1975 caused tremendous damages and deaths in Henan, one of the most populated provinces in China. Revealing the relationship between large-scale circulation patterns and precipitation extremes is vital for understanding the physical mechanisms and providing potential value for improving prediction and hence reducing impacts. Here, nine large-scale circulation patterns are identified for July-August using the self-organizing map. We find daily precipitation extremes under the fifth pattern (P5), characterized with the strongest easterly wind anomalies in Henan, feature the highest frequency and the largest intensity. Seven out of total 11 days in the two catastrophic extreme precipitation events belong to P5, and the top two maximum hourly precipitation extremes over continental China occurred under P5. The larger intensity of precipitation extremes is attributed to the dynamical contribution, suggesting more-intense precipitation extremes under P5 are largely dominated by stronger ascending motions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000778759800001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1561  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: