Records |
Author |
de Figueiredo, C.M.H.; de Mello, C.P.; Ortiz, C. |
Title |
Edge colouring reduced indifference graphs |
Type |
|
Year |
2000 |
Publication |
Lecture Notes in Computer Sciences |
Abbreviated Journal |
Lect. Notes Comput. Sc. |
Volume |
1776 |
Issue |
|
Pages |
145-153 |
Keywords |
|
Abstract |
The chromatic index problem – finding the minimum number of colours required for colouring the edges of a graph – is still unsolved for indifference graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pair of twin vertices. A graph is overfull if the total number of edges is greater than the product of the maximum degree by [n/2], where n is the number of vertices. We give a structural characterization for neighbourhood-over full indifference graphs proving that a reduced indifference graph cannot be neighbourhood-overfull. We show that the chromatic index for all reduced indifference graphs is the maximum degree. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0302-9743 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
Latin 2000: Theoretical Informaticsture Notes in Computer Science |
Notes |
WOS:000165335400016 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
25 |
Permanent link to this record |
|
|
|
Author |
de Figueiredo, C.M.H.; Meldanis, J.; de Mello, C.P.; Ortiz, C. |
Title |
Decompositions for the edge colouring of reduced indifference graphs |
Type |
|
Year |
2003 |
Publication |
Theoretical Computer Science |
Abbreviated Journal |
Theor. Comput. Sci. |
Volume |
297 |
Issue |
1-3 |
Pages |
145-155 |
Keywords |
|
Abstract |
The chromatic index problem-finding the minimum number of colours required for colouring the edges of a graph-is still unsolved for indifference graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. We present new positive evidence for the conjecture: every non neighbourhood-overfull indifference graph can be edge coloured with maximum degree colours. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pair of twin vertices. A graph is overfull if the total number of edges is greater than the product of the maximum degree by [n/2], where n is the number of vertices. We give a structural characterization for neighbourhood-overfull indifference graphs proving that a reduced indifference graph cannot be neighbourhood-overfull. We show that the chromatic index for all reduced indifference graphs is the maximum degree. We present two decomposition methods for edge colouring reduced indifference graphs with maximum degree colours. (C) 2002 Elsevier Science B.V. All rights reserved. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0304-3975 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000181732700008 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
24 |
Permanent link to this record |