|   | 
Details
   web
Records
Author (up) Ledger, T.; Rojas, S.; Timmermann, T.; Pinedo, I.; Poupin, M.J.; Garrido, T.; Richter, P.; Tamayo, J.; Donoso, R.
Title Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana Type
Year 2016 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.
Volume 7 Issue Pages 18 pp
Keywords plant growth promoting rhizobacteria (PGPR); Paraburkholderia phytofirmans PsJN; Arabidopsis thaliana; abiotic stress tolerance; ACC deaminase; volatile organic compounds (VOCs)
Abstract Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homosenne-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
Address [Ledger, Thomas; Rojas, Sandy; Timmermann, Tania; Pinedo, Ignacio; Poupin, Maria J.; Tamayo, Javier; Donoso, Raul] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Lab Bioingn, Santiago, Chile, Email: tledger@uai.cl
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Medium
Area Expedition Conference
Notes WOS:000388754700001 Approved
Call Number UAI @ eduardo.moreno @ Serial 679
Permanent link to this record
 

 
Author (up) Ledger, T.; Zuniga, A.; Kraiser, T.; Dasencich, P.; Donoso, R.; Perez-Pantoja, D.; Gonzalez, B.
Title Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134 Type
Year 2012 Publication Antonie Van Leeuwenhoek International Journal Of General And Molecular Microbiology Abbreviated Journal Antonie Van Leeuwenhoek
Volume 101 Issue 4 Pages 713-723
Keywords Acacia caven; Arabidopsis thaliana; Aromatic compounds; Cupriavidus pinatubonensis JMP134; Plant growth; Rhizosphere
Abstract Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the beta-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.
Address [Ledger, Thomas; Zuniga, Ana; Dasencich, Paola; Donoso, Raul; Gonzalez, Bernardo] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: bernardo.gonzalez@uai.cl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6072 ISBN Medium
Area Expedition Conference
Notes WOS:000303402400003 Approved
Call Number UAI @ eduardo.moreno @ Serial 214
Permanent link to this record
 

 
Author (up) Zuniga, A.; de la Fuente, F.; Federici, F.; Lionne, C.; Bonnet, J.; de Lorenzo, V.; Gonzalez, B.
Title An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth Type
Year 2018 Publication Acs Synthetic Biology Abbreviated Journal ACS Synth. Biol.
Volume 7 Issue 6 Pages 1519-1527
Keywords Arabidopsis thaliana; Cupriavidus pinatubonensis; quorum sensing; synthetic beneficial interaction
Abstract The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.
Address [Zuniga, Ana; de la Fuente, Francisco; Gonzalez, Bernardo] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Ctr Appl Ecol & Sustainabil, Santiago 2640, Chile, Email: ana.zuniga@cbs.cnrs.fr
Corporate Author Thesis
Publisher Amer Chemical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2161-5063 ISBN Medium
Area Expedition Conference
Notes WOS:000435746400005 Approved
Call Number UAI @ eduardo.moreno @ Serial 877
Permanent link to this record