toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ashfaq, M.; Talreja, N.; Chauhan, D.; Rodriguez, C.A.; Mera, A.C.; Mangalaraja, R.V. doi  openurl
  Title Synthesis of reduced graphene oxide incorporated bimetallic (Cu/Bi) nanorods based photocatalyst materials for the degradation of gallic acid and bacteria Type
  Year 2022 Publication Journal of Industrial and Engineering Chemistry Abbreviated Journal J. Ind. Eng. Chem.  
  Volume 110 Issue Pages 447-455  
  Keywords Gallic acid; Graphene oxide; Bimetallic; Nanorods; Photocatalysis  
  Abstract Gallic acid (GA) is a polyphenols compound commonly present in wastewater that immensely affects aquatic and human life. GA is also responsible for the inhibitory effects on the microbial activity in the soil, thereby decreasing the fertility of the soil. Therefore, the removal of GA from the wastewater is necessary to combat such issues. The present study focused on the synthesis of reduced graphene oxide (rGO) incorporated bimetallic (Cu/Bi) based nanorods (r-GO-Cu/Bi-NRs) and their photocatalytic applications. Incorporating GO within the CuBi2O4-NRs might decrease the bandgap value, thereby increasing the interfacial charge transfer. Moreover, GO increased the reactive sites and oxygen defects onto the r-GO-Cu/Bi-NRs that led to the separation rate of the photo-induced charge carriers and migration, thereby enhancing the photodegradation ability of the synthesized r-GO-Cu/Bi-NRs. The synthesis process of the r-GO-Cu/Bi-NRs is facile, novel, and economically viable for the photocatalytic degradation of organic pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1226-086X ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000891729100002 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1663  
Permanent link to this record
 

 
Author Ashina, C.; Pugazhenthiran, N.; Sathishkumar, P.; Selvaraj, M.; Assiri, M.A.; Rajasekaran, C.; Gracia-Pinilla, M.A.; Mangalaraja, R.V. doi  openurl
  Title Ultra-small Ni@NiFe2O4/TiO2 magnetic nanocomposites activated peroxymonosulphate for solar light-driven photocatalytic mineralization of Simazine Type
  Year 2023 Publication Journal of Environmental Chemical Engineering Abbreviated Journal J. Environ. Chem. Eng.  
  Volume 11 Issue 6 Pages 111342  
  Keywords Simazine; Photocatalysis; Sonochemical approach; HPLC; Mineralization; Hydroxyl radicals  
  Abstract In the heterogeneous photocatalytic degradation of environmental contaminants the recovery, reuse of employed nanocatalyst was crucial and it is essentially required for the scale up applications. Besides, designing a magnetic material with heterojunction that can effectively oxidize the toxic organic contaminants to non-toxic substance under different reaction conditions including direct solar light irradiation remains a challenge. Considering the above facts, herein, we tailored heterojunction between the magnetic materials and non-magnetic materials with ultra-small Ni nanoparticles modified NiFe2O4/TiO2 nanostructures (Ni@NiFe2O4/TiO2 magnetic nanocomposites) through a simple sonochemical route. The Raman phonons at similar to 540 cm(-1) consistent to nickel metal nanoparticles and the spinel ferrites crystal structure confirmed the formation of Ni@NiFe2O4/TiO2 magnetic nanocomposites. The reduced optical bandgap of the resulting nanocomposites indicated the effective absorption of direct solar light irradiation when compared to the bare TiO2. Thus in-turn, enhanced the photocatalytic efficiency of simazine degradation in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 11.0 x 10(-4) s(-1)) and augmented the activation of peroxymonosulphate (PMS) in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 32.5 x 10(-4) s(-1)). Ni@NiFe2O4/TiO2 +PMS exhibited 3 folds enhanced efficiency in the presence of sunlight. The as-prepared NiFe2O4/TiO2 magnetic nanocatalysts were more stable and the efficiency of simazine oxidation was approximately same for the continuous five cycles at the optimized experimental conditions. The Ni@NiFe2O4/TiO2 magnetic nanocomposites preparation and the activation of PMS may promise the applications in an efficient wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2929 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111068900001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1926  
Permanent link to this record
 

 
Author Larrain, F.A.; Fuentes-Hernandez, C.; Chang, Y.CH.; Rodriguez-Toro, V.A.; Abraham, S.; Kippelen, B. doi  openurl
  Title Increasing Volume in Conjugated Polymers to Facilitate Electrical Doping with Phosphomolybdic Acid Type
  Year 2021 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces  
  Volume 13 Issue 19 Pages 23260-23267  
  Keywords ORGANIC SEMICONDUCTORS; SOLAR-CELLS; CATALYSIS; TRANSPORT; PROGRESS; FILMS; RAMAN  
  Abstract Molecular p-type electrical dopants have been proven useful to fine-tune the optoelectronic properties of bulk organic semiconductors and their interfaces. Here, the volume in polymer films and its role in solution-based electrical p-type doping using phosphomolybdic acid (PMA) are studied. The polymer film volume was controlled using two approaches. One is based on heating both the PMA solution and the film prior to immersion. The second is based on coating the polymer film with a liquid blend that contains the PMA solution and a swelling solvent. 31P NMR and FTIR experiments indicate that the Keggin structure appears to be preserved throughout the doping process. Results show that increasing the polymer volume facilitates the infiltration of the PMA Keggin structure, which results in an increased electrical p-type doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655027500116 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1382  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: