|   | 
Details
   web
Records
Author Blasi, F.; Caamano-Carrillo, C.; Bevilacqua, M.; Furrer, R.
Title A selective view of climatological data and likelihood estimation Type
Year 2022 Publication Spatial Statistics Abbreviated Journal Spat. Stat.
Volume 50 Issue SI Pages 100596
Keywords Tapering; Composite likelihood; Sinh-arcsinh distribution; CMIP6 data; Random field; Spatial process
Abstract This article gives a narrative overview of what constitutes climatological data and their typical features, with a focus on aspects relevant to statistical modeling. We restrict the discussion to univariate spatial fields and focus on maximum likelihood estimation. To address the problem of enormous datasets, we study three common approximation schemes: tapering, direct misspecification, and composite likelihood for Gaussian and nonGaussian distributions. We focus particularly on the so-called 'sinh-arcsinh distribution', obtained through a specific transformation of the Gaussian distribution. Because it has flexible marginal distributions – possibly skewed and/or heavy-tailed – it has a wide range of applications. One appealing property of the transformation involved is the existence of an explicit inverse transformation that makes likelihood-based methods straightforward. We describe a simulation study illustrating the effects of the different approximation schemes. To the best of our knowledge, a direct comparison of tapering, direct misspecification, and composite likelihood has never been made previously, and we show that direct misspecification is inferior. In some metrics, composite likelihood has a minor advantage over tapering. We use the estimation approaches to model a high-resolution global climate change field. All simulation code is available as a Docker container and is thus fully reproducible. Additionally, the present article describes where and how to get various climate datasets. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-6753 ISBN Medium
Area Expedition Conference
Notes WOS:000822683400023 Approved
Call Number UAI @ alexi.delcanto @ Serial 1619
Permanent link to this record
 

 
Author Dewitte, B.; Concha, E.; Saavedra, D.; Pizarro, O.; Martinez-Villalobos, C.; Gushchina, D.; Ramos, M.; Montecinos, A.
Title The ENSO-induced South Pacific Meridional Mode Type
Year 2023 Publication Frontiers in Climate Abbreviated Journal Front. Clim.
Volume 4 Issue Pages 18 pp
Keywords ENSO; South Pacific Meridional Model; oceanic teleconnection; CMIP; ENSO SO complexity
Abstract Previous studies have investigated the role of the Pacific meridional mode (PMM), a climate mode of the mid-latitudes in the Northern and Southern Hemisphere, in favoring the development of the El Niño Southern Oscillation (ENSO). However little is known on how ENSO can influence the development of the PMM. Here we investigate the relationship between ENSO and the South Pacific Meridional Mode (SPMM) focusing on strong SPMM events that follows strong El Niño events. This type of events represents more than 60% of such events in the observational record and the historical simulations of the CESM Large ensemble (CESM-LE). It is first shown that such a relationship is rather stationary in both observations and the CESM-LE. Our analyses further reveal that strong SPMM events are associated with a coastal warming o northern central Chile peaking in Austral winter resulting from the propagation of waves forced at the equator during the development of El Niño events. The time delay between the ENSO peak (Boreal winter) and this coastal warming (Austral winter) can be understood in terms of the diferential contribution of the equatorially-forced propagating baroclinic waves to the warming along

the coast. In particular, the diference in phase speeds of the waves (the

high-order mode the wave the slower) implies that they do not overlap along their propagation south of 20◦S. This contributes to the persistence of warm coastal SST anomalies o Central Chile until the Austral summer following the concurrent El Niño event. This coastal warming is favorable to the development of strong SPMM events as the South Pacific Oscillation become active during that season. The analysis of the simulations of the Coupled Intercomparison Project phases 5 and 6 (CMIP5/6) indicates that very few models realistically simulate this ENSO/SPMM relationship and associated oceanic teleconnection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2624-9553 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1719
Permanent link to this record
 

 
Author Martinez-Villalobos, C.; Neelin, J.D.
Title Regionally high risk increase for precipitation extreme events under global warming Type
Year 2023 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 13 Issue Pages 5579
Keywords EL-NINO; HEAVY PRECIPITATION; FUTURE CHANGES; CLIMATE; MODEL; INTENSIFICATION; CONSTRAINT; SATELLITE; FREQUENCY; CMIP5
Abstract Daily precipitation extremes are projected to intensify with increasing moisture under global warming following the Clausius-Clapeyron (CC) relationship at about 7%/∘C

. However, this increase is not spatially homogeneous. Projections in individual models exhibit regions with substantially larger increases than expected from the CC scaling. Here, we leverage theory and observations of the form of the precipitation probability distribution to substantially improve intermodel agreement in the medium to high precipitation intensity regime, and to interpret projected changes in frequency in the Coupled Model Intercomparison Project Phase 6. Besides particular regions where models consistently display super-CC behavior, we find substantial occurrence of super-CC behavior within a given latitude band when the multi-model average does not require that the models agree point-wise on location within that band. About 13% of the globe and almost 25% of the tropics (30% for tropical land) display increases exceeding 2CC. Over 40% of tropical land points exceed 1.5CC. Risk-ratio analysis shows that even small increases above CC scaling can have disproportionately large effects in the frequency of the most extreme events. Risk due to regional enhancement of precipitation scale increase by dynamical effects must thus be included in vulnerability assessment even if locations are imprecise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000983866100058 Approved
Call Number UAI @ alexi.delcanto @ Serial 1761
Permanent link to this record