|   | 
Details
   web
Records
Author Becker, F.; Montealecre, P.; Rapaport, I.; Todinca, I.
Title The Impact Of Locality In The Broadcast Congested Clique Model Type
Year 2020 Publication Siam Journal On Discrete Mathematics Abbreviated Journal SIAM Discret. Math.
Volume 34 Issue 1 Pages 682-700
Keywords broadcast congested clique; induced cycles; graph degeneracy
Abstract The broadcast congested clique model (BCLIQUE) is a message-passing model of distributed computation where n nodes communicate with each other in synchronous rounds. First, in this paper we prove that there is a one-round, deterministic algorithm that reconstructs the input graph G if the graph is d-degenerate, and rejects otherwise, using bandwidth b = O(d . log n). Then, we introduce a new parameter to the model. We study the situation where the nodes, initially, instead of knowing their immediate neighbors, know their neighborhood up to a fixed radius r. In this new framework, denoted BCLIQuE[r], we study the problem of detecting, in G, an induced cycle of length at most k (CYCLE <= k) and the problem of detecting an induced cycle of length at least k +1 (CYCLE>k). We give upper and lower bounds. We show that if each node is allowed to see up to distance r = left perpendicular k/2 right perpendicular + 1, then a polylogarithmic bandwidth is sufficient for solving CYCLE>k with only two rounds. Nevertheless, if nodes were allowed to see up to distance r = left perpendicular k/3 right perpendicular, then any one-round algorithm that solves CYCLE>k needs the bandwidth b to be at least Omega(n/ log n). We also show the existence of a one-round, deterministic BCLIQUE algorithm that solves CYCLE <= k with bandwitdh b = O(n(1/left perpendicular k/2 right perpendicular). log n). On the negative side, we prove that, if epsilon <= 1/3 and 0 < r <= k/4, then any epsilon-error, R-round, b-bandwidth algorithm in the BCLIQUE[r] model that solves problem CYCLE(<= k )satisfies R . b = Omega(n(1/left perpendicular k/2 right perpendicular)).
Address [Becker, F.; Todinca, I] Univ Orleans, INSA Ctr Val Loire, LIFO EA 4022, Orleans, France, Email: florent.becker@univ-orleans.fr;
Corporate Author Thesis
Publisher Siam Publications Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0895-4801 ISBN Medium
Area Expedition Conference
Notes WOS:000546886700033 Approved
Call Number UAI @ eduardo.moreno @ Serial 1182
Permanent link to this record
 

 
Author Montealegre, R.; Perez-Salazar, S.; Rapaport, I.; Todinca, I.
Title Graph reconstruction in the congested clique Type
Year 2020 Publication Journal Of Computer And System Sciences Abbreviated Journal J. Comput. Syst. Sci.
Volume 113 Issue Pages 1-17
Keywords Distributed computing; Congested clique; Round complexity; Reconstruction problem; Graph classes
Abstract In this paper we study the reconstruction problem in the congested clique model. Given a class of graphs g, the problem is defined as follows: if G is not an element of g, then every node must reject; if G is an element of g, then every node must end up knowing all the edges of G. The cost of an algorithm is the total number of bits received by any node through one link. It is not difficult to see that the cost of any algorithm that solves this problem is Omega(log vertical bar g(n)vertical bar/n), where g(n) is the subclass of all n-node labeled graphs in g. We prove that the lower bound is tight and that it is possible to achieve it with only 2 rounds. (C) 2020 Elsevier Inc. All rights reserved.
Address [Montealegre, R.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: p.montealegre@edu.uai;
Corporate Author Thesis
Publisher Academic Press Inc Elsevier Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0000 ISBN Medium
Area Expedition Conference
Notes WOS:000539435200001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1190
Permanent link to this record