|   | 
Details
   web
Records
Author Goles, E.; Lobos, F.; Montealegre, P.; Ruivo, ELP.; de Oliveira, PPB.
Title Computational Complexity of the Stability Problem for Elementary Cellular Automata Type
Year 2020 Publication Journal of Cellular Automata Abbreviated Journal J. Cell. Autom.
Volume 15 Issue 4 Pages 261-304
Keywords One-dimensional cellular automata; elementary cellular automata; computational complexity; stability problem; decision problem
Abstract Given an elementary cellular automaton and a cell v, we define the stability decision problem as the determination of whether or not the state of cell v will ever change, at least once, during the time evolution of the rule, over a finite input configuration. Here, we perform the study of the entire elementary cellular automata rule space, for the two possible decision cases of the problem, namely, changes in v from state 0 to 1 (0 -> 1), and the other way round (1 -> 0). Out of the 256 elementary cellular automata, we show that for all of them, at least one of the two decision problems is in the NC complexity class.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-5969 ISBN Medium
Area Expedition Conference
Notes WOS:000613086900002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1329
Permanent link to this record
 

 
Author Goles, E.; Montalva-Medel, M.; MacLean, S.; Mortveit, H.
Title Block Invariance in a Family of Elementary Cellular Automata Type
Year 2018 Publication Journal Of Cellular Automata Abbreviated Journal J. Cell. Autom.
Volume 13 Issue 1-2 Pages 15-32
Keywords Elementary cellular automata; block updates; periodic configurations; block invariance
Abstract We study the steady state invariance of elementary cellular automata (ECA) under different deterministic updating schemes. Specifically, we study a family of eleven ECA whose steady state invariance were left under conjecture in [2].
Address [Goles, Eric; Montalva-Medel, Marco; MacLean, Stephanie] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: eric.chacc@uai.cl;
Corporate Author Thesis
Publisher Old City Publishing Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-5969 ISBN Medium
Area Expedition Conference
Notes WOS:000410888100002 Approved
Call Number UAI @ eduardo.moreno @ Serial 782
Permanent link to this record
 

 
Author Goles, E.; Montalva-Medel, M.; Mortveit, H.; Ramirez-Flandes, S.
Title Block Invariance in Elementary Cellular Automata Type
Year 2015 Publication Journal Of Cellular Automata Abbreviated Journal J. Cell. Autom.
Volume 10 Issue 1-2 Pages 119-135
Keywords Elementary cellular automata; block updates; periodic points; block invariance
Abstract Consider an elementary cellular automaton (ECA) under periodic boundary conditions. Given an arbitrary partition of the set of vertices we consider the block updating, i.e. the automaton's local function is applied from the first to the last set of the partition such that vertices belonging to the same set are updated synchronously. The automaton is said block-invariant if the set of periodic configurations is independent of the choice of the block updating. When the sets of the partition are singletons we have the sequential updating: vertices are updated one by one following a permutation pi. In [5] the authors analyzed the pi-invariance of the 2(8) = 256 possible ECA rules (or the 88 non-redundant rules subset). Their main result was that for all n > 3, exactly 41 of these non-redundant rules are pi-invariant. In this paper we determine the subset of these 41 rules that are block invariant. More precisely, for all n > 3, exactly 15 of these rules are block invariant. Moreover, we deduce that block invariance also implies that the attractor structure itself is independent of the choice of the block update.
Address [Goles, Eric; Montalva-Medel, Marco; Ramirez-Flandes, Salvador] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Penalolen, Chile, Email: eric.chacc@uai.cl;
Corporate Author Thesis
Publisher Old City Publishing Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-5969 ISBN Medium
Area Expedition Conference
Notes WOS:000350183000006 Approved
Call Number UAI @ eduardo.moreno @ Serial 461
Permanent link to this record
 

 
Author Goles, E.; Moreira, A.; Rapaport, I.
Title Communication complexity in number-conserving and monotone cellular automata Type
Year 2011 Publication Theoretical Computer Science Abbreviated Journal Theor. Comput. Sci.
Volume 412 Issue 29 Pages 3616-3628
Keywords Cellular automata; Communication complexity; Elementary cellular automata; Number-conserving
Abstract One third of the elementary cellular automata (CAs) are either number-conserving (NCCAs) or monotone (increasing or decreasing). In this paper we prove that, for all of them, we can find linear or constant communication protocols for the prediction problem. In other words, we are able to give a succinct description for their dynamics. This is not necessarily true for general NCCAs. In fact, we also show how to explicitly construct, from any CA, a new NCCA which preserves the original communication complexity. (C) 2011 Elsevier B.V. All rights reserved.
Address [Moreira, A] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile, Email: eric.chacc@uai.cl
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3975 ISBN Medium
Area Expedition Conference
Notes WOS:000292077200019 Approved
Call Number UAI @ eduardo.moreno @ Serial 153
Permanent link to this record
 

 
Author Perrot, K.; Montalva-Medel, M.; de Oliveira, P.P.B.; Ruivo, E.L.P.
Title Maximum sensitivity to update schedules of elementary cellular automata over periodic configurations Type
Year 2020 Publication Natural Computing Abbreviated Journal Nat. Comput.
Volume 19 Issue 1 Pages 51-90
Keywords Synchronism sensitivity; Elementary cellular automata; Update digraph
Abstract This work is a thoughtful extension of the ideas sketched in Montalva et al. (AUTOMATA 2017 exploratory papers proceedings, 2017), aiming at classifying elementary cellular automata (ECA) according to their maximal one-step sensitivity to changes in the schedule of cells update. It provides a complete classification of the ECA rule space for all period sizes n[ 9 and, together with the classification for all period sizes n <= 9 presented in Montalva et al. (Chaos Solitons Fractals 113:209-220, 2018), closes this problem and opens further questionings. Most of the 256 ECA rule's sensitivity is proved or disproved to be maximum thanks to an automatic application of basic methods. We formalize meticulous case disjunctions that lead to the results, and patch failing cases for some rules with simple arguments. This gives new insights on the dynamics of ECA rules depending on the proof method employed, as for the last rules 45 and 105 requiring o0011THORN induction patterns.
Address [Perrot, Kevin] Univ, Aix Marseille Univ.,Toulon,CNRS,UMR 7020, Marseille, France, Email: kevin.perrot@lis-lab.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-7818 ISBN Medium
Area Expedition Conference
Notes WOS:000517129300006 Approved
Call Number UAI @ eduardo.moreno @ Serial 1162
Permanent link to this record