toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cruz, J.J.; Escudero, F.; Alvarez, E.; da Silva, L.F.F.; Carvajal, G.; Thomsen, M.; Fuentes, A. doi  openurl
  Title Three-wavelength broadband soot pyrometry technique for axisymmetric flames Type
  Year 2021 Publication Optics Letters Abbreviated Journal Opt. Lett.  
  Volume 46 Issue 11 Pages 2654-2657  
  Keywords VOLUME FRACTION; DIFFUSION FLAMES; TEMPERATURE; ABSORPTION; ETHYLENE  
  Abstract Soot temperature measurements in laminar flames are often performed through two-color broadband emission pyrometry (BEMI) or modulated absorption/emission (BMAE) techniques, using models to relate the ratio between flame intensities at two different wavelengths with soot temperature. To benefit from wider spectral range and increase the accuracy of experimental estimation of soot temperature, this work proposes a new approach that uses three-color broadband images captured with a basic color camera. The methodology is first validated through simulations using numerically generated flames from the CoFlame code and then used to retrieve soot temperature in an experimental campaign. The experimental results show that using three-color and BEMI provides smoother reconstruction of soot temperature than two-color and BMAE when small disturbances exist in the measured signals due to a reduced experimental noise effect. A sensitivity analysis shows that the retrieved temperature from three-color BEMI is more resilient to variations on the ratio of measured signals than BMAE, which is confirmed by an error propagation analysis based on a Monte Carlo approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-9592 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658132700025 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1413  
Permanent link to this record
 

 
Author Pugazhenthiran, N.; Valdes, H.; Mangalaraja, R.V.; Sathishkumar, P.; Murugesan, S. doi  openurl
  Title Graphene modified “black {001}TiO2” nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism Type
  Year 2022 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 292 Issue Pages 121008  
  Keywords Black TiO2 NSTs; Ethylene; Photocatalytic oxidation; Postharvest technologies; Reduced graphene oxide  
  Abstract In this work, crystal facets, bandgap, size and shape of reduced graphene oxide (rGO) modified anatase {001} black TiO2 nanosheets (rGO-B-TiO2 NSTs) were tailored for the photocatalytic oxidation of ethylene under high humidity content. XRD, Raman and HR-TEM analyses confirm that rGO-B-TiO2 NSTs have a 94 % of exposed {001} facets with high number of oxygen vacancies. In addition, rGO-B-TiO2 NSTs exhibit increased values of surface area and porosity compared to its pristine form. A 48 and 34 mu mol g(-1) of ethylene are adsorbed at the surface of rGO-B-TiO2 NSTs in the absence and in the presence of humidity, respectively. In addition, operando DRIFTS analyses provide the insight of surface interactions between ethylene molecules and adsorption sites of rGO-B-TiO2 NSTs. The photocatalytic removal efficiencies of the synthesized materials under both UV and visible light irradiation proceed as follows: rGO-B-TiO2 NSTs > B-TiO2 NSTs > TiO2 NSTs > commercial TiO2 NPs. Further, ethylene is very quickly photocatalytic oxidized when rGO-B-TiO2 NSTs is applied under UV light irradiation, having a 72 and 92 % ethylene removal in the absence and in the presence of humidity, respectively. Moreover, a 48 and 58 % of ethylene removal takes place in the absence and presence of humidity under visible light irradiation, respectively. Results indicate that rGO-B-TiO2 NSTs boost the photocatalytic activity through their virtue of visible-light absorption properties (Bandgap = 2.61 eV) and the rapid electron-hole separation at the rGO {0 0 1} black TiO2 NSTs interfaces. Such findings are confirmed through UV-visible diffused reflectance, photoelectrochemical and photoluminescence analyses. Nanosheets made of rGO modified {0 0 1} black TiO2 could be used as an effective photocatalyst for the removal of ethylene from large volume fruit storage areas by exploiting a simple light source in the presence of high content of humidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:00080749040000 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: